Apologies for the re-upload. In the previous version I only solved for positive integers. It is straightforward to then find the other solution. But I uploaded this corrected video presenting both because not everyone reads the comments. Also these videos are getting shared in a lot of places so I'm doing my best to present accurate mathematical results. I thank Aniket Gupta and Ryan Wilson for pointing out the oversight!
@PraneshPyaraShrestha6 жыл бұрын
What is your email?
@MindYourDecisions6 жыл бұрын
So where did I go wrong in the original video? I often get emails where people ask me to look for mistakes in their work, if they did not find the correct solution in one of my videos. One important skill in mathematics is reviewing your own work. It's not always fun, but it's really important to learn where you might make errors. So where did I go wrong? In my self-review, there are three places I could have realized my mistake. Place #1: I said the difference of factors is (2^n + x) - (2^n - x) = 2x. Then I solved 2x = 118 to get x = 59. The thing is the difference of factors can also be (2^n - x) - (2^n + x) = -2x. Setting that equal to 118 would have given x = -59. Place #2: When I solved y = 12, I could have then solved 615 + x^2 = 2^12 where I could have seen x = 59 or -59. Place #3: In checking my work, I should have seen there was an x^2 term, and it's a common mistake to overlook a negative solution. This is the kind of self-criticism I do for my math homework. I have noticed people don't like to admit if they are wrong. But I have found self-reviews and honesty are big strengths to improving math skills. So I thank all the legitimate criticism (if accompanied with legitimate honesty) for these videos--you're helping us all get better at math.
@PraneshPyaraShrestha6 жыл бұрын
@@MindYourDecisions your email please. I have an important question that no one in Nepal has solved.
@Lqtan166 жыл бұрын
Pranesh Pyara Shrestha his email is at every end of his video
@PraneshPyaraShrestha6 жыл бұрын
@@Lqtan16 oh I found it
@Rimtay5 жыл бұрын
Can you imagine solving all the question and forgetting to include -59 to the equation get 0 because of it.
@sxz4524 жыл бұрын
That's sooooo sad
@Goku_is_my_idol4 жыл бұрын
Lol i did same😂
@namanlakhotia63934 жыл бұрын
@@Vegan_PhysicsEnthusiast u definitely dont have these questions
@funni1114 жыл бұрын
@@namanlakhotia6393 if you do prmo training you will definitely get this type of questions
@namanlakhotia63934 жыл бұрын
@@funni111 prmo is not comp in schools though
@arnavraut96915 жыл бұрын
literally a week after every video criticizing wolfram alpha's capabilities is posted, they end up fixing it
@@ashyourresidentenby5916 solve 604 + x^3 = 3^y over the integers lmao still cant solve these types of questions
@ashyourresidentenby59165 жыл бұрын
@@tgdhsuk3589 x is 5 and y is 6 HA solved it in like 15 seconds
@pdpgrgn5 жыл бұрын
@@tgdhsuk3589 WolframAlpha solves this
@quantumsoul34955 жыл бұрын
Ethical hacking..
@roshandon31575 жыл бұрын
*99% of the people who clicked the video underestimated this problem*
@radekvecerka11155 жыл бұрын
@BlazePlayz YT of course you can just blindly type in numbers, that´s easy, but what if the answer was smth like y=22 i think you would have some troubles then
@rishijai5 жыл бұрын
@BlazePlayz YT Yep the key is to spot 3481 as a square
@Martin-zr2tb5 жыл бұрын
Rishi Jai is there a certain trick to spotting a high number with a square root? Cus I did the blindly squaring numbers on my calculator around the sums + 615 being a power of 2 thing...
@nonidhgupta94054 жыл бұрын
I did but I solved it too
@ReenaKumari-vq2rk4 жыл бұрын
@KZbin Watcher i also did the same😁
@antilogis62045 жыл бұрын
7:27 "All we did was use of principles of number theories." Right, very simple...
@lach9933 жыл бұрын
WYSI
@lukkash5 жыл бұрын
You can solve it beautifully in Excel by solving (with parameters) an equation as 615+x^2 - 2^y = 0 Alternatively you can calculate y=log(615+x^2)/log(2) and then an integer value of y should be found. All to be solved in Excel :)
@btf_flotsam4782 жыл бұрын
I'd give you a cookie, but you only really deserve it if you use SQL. (By the way, good luck brute-forcing the proof that there are no other solutions.)
@rcnayak_586 жыл бұрын
It is easier to solve this problem with little logical way than to follow Presh`s complicated method. Look at the problem once. 2^y is always an even number irrespective of whether y is even or odd. Now we can write the equation as 615 =2^y - x^2. Here 615 is an odd number. Therefore, x^2 will have to be an odd number. Because, the difference between two even numbers is always even and the difference between an even number and an odd number is always odd. Since x^2 is an odd number, x must be an odd number too as the square of an odd number is always an odd number and the vice-versa is also true. Let x = 2n+1 for any value of n, odd or even. Now we have 2^y - (2n+1)^2 = 615. This can be written as (2^(y/2))^2 - (2n+1)^2 = 615. This now becomes the difference between two squares form. That means the left hand side will be the product of [(2^(y/2)) + (2n+1)][2^(y/2) - (2n+1)]. Putting, 2^(y/2) = a, and 2n+1 = b for simplification, we have (a+b)(a-b) = 615. Now 615 has to be the product of two numbers. The number 615 = 1 x 3 x 5 x 41. Therefore, we have four alternative pair of numbers whose product will be 615. They are (i) a+b = 615 and a - b = 1 or (ii) a + b = 205 and a - b = 3 or (iii) a + b =123 and a - b = 5 or (iv) a + b = 41 and a - b = 15. Solving (i) we have a = 308, b = 307 (ii) a =104, b = 101 (iii) a = 64, b = 59 and (iv) a = 28, b = 13. Here note that 'a' = 2^(y/2) that is a number power of 2. If we check the values of 'a' in all thee alternatives, only (iii) which is 64,satisfies our condition and the others are not.Therefore 2^(y/2) = 64 = 2^6. That is y/2 =6, That is y = 12 and b = 2n+1 = x =59.
@xmarteo6 жыл бұрын
You assumed a to be an integer without proving that y is even.
@rcnayak_586 жыл бұрын
@@xmarteo I have simplified it in a better way in my next explanation. Pl look at it again.
@raphaelmillion6 жыл бұрын
@@rcnayak_58 you don't even have to set b = 2n+1 because you don't use it again. Also, xmarteo's comment raises a valid concern, because then you would have to check for more divisors (divisors on Z[sqrt(2)] ). Or you could show that y is even, resulting in the same proof as MindYourDecisions. Ultimately, your proof is not shorter than MindYourDecisions'.
@ChristopherNight6 жыл бұрын
@@rcnayak_58 Try your logic with 23 + x^2 = 2^y. You'll get that (a+b)(a-b) = 23, which only has one integer solution: (a, b) = (12, 11), and since 12 is not a power of 2, you would conclude that there's no solution with integer x and y. But (x, y) = (3, 5) is a solution, corresponding to (a, b) = (4sqrt(2), 3).
@TejvirJogani6 жыл бұрын
@@xmarteo 2^y is always even because it's a multiple of 2 and an even number is defined as multiple to, so by definition 2^y is even. The problem though, is that this solution is almost as complex as Presh's, because it practically requires the same methodology of thinking. While I agree it might be efficient, you've to keep in mind that he was send this solution as well.
@AYUSHGAMEROFFICIAL5 жыл бұрын
He:this is presh talwalkar Captions:this is fresh lakewater
@shambosaha97274 жыл бұрын
pressure walker
@Enavoid4 жыл бұрын
dash fallwalker
@ahmadm76184 жыл бұрын
it says Presh TalWalker here
@adityarajsrivastava65804 жыл бұрын
It says pressure locker
@GigaPlaya4 жыл бұрын
Not Luke Skywalker.
@notwildcard3773 жыл бұрын
UPDATE : Wolfram Alpha can now solve this problem. I loved your approach.
@spacefertilizer5 жыл бұрын
Great and imaginative solution! Lots of people commenting on these problems don’t understand mathematics though. They believe one only has to do trial and error to find one solution, but forget all about finding every possible solution while also showing that there can be no other. This is the core thinking that should be taught. Wonder what they actually teach people in school nowadays.
@ethanfrommer77726 жыл бұрын
Hey presh. Just wanted to thank you... we had a really difficult math test that was more about thinking than calculating. It was really hard but everytime i started a new question, I thought about what Presh will do and how he will solve that, and that helped solving most of the problems. Thanks for improving and sharpening the thinking for me, and for other hundreds of thousands people
@HueHanaejistla5 жыл бұрын
ethan frommer ok boomer
@Seekingpatience194 жыл бұрын
@@sahaj9810 wait how did u get the 2^10 , 2^11, and 2^12 are the only possibilities? im a little confused.
@suryakalawasnik62043 жыл бұрын
@@sahaj9810 he wanted to say what about 2¹³ .. 2¹⁴..2^15 and so on
@harshitagoyal71344 жыл бұрын
After spotting that n > 9, I just used trial and error with n = 10, 11... to check which values would give a perfect square for 2^n - 615. Eventhough, trial and error isnt the 'best' way to solve problems, I think this would be a quicker approach :) THOUGH I ABSOLUTELY LOVED THE WAY YOU DID IT, IT IS ALWAYS FUN TO KNOW HOW THE OTHER PERSON SOLVED IT. I LOVE MULTIPLE APPROACHES
@jerrygundecker7436 жыл бұрын
I was with you right up to "You're watching Mind Your Decisions"....After that I said, "Huh?"
@SameerKhan-fd2qe5 жыл бұрын
Fresh tall walker
@MathIguess5 жыл бұрын
@@SameerKhan-fd2qe Fresh Tail Wagger
@JLvatron3 жыл бұрын
Wolfram & Hart couldn’t solve it, but Winifred Burkle could! Thanks for this genius solution.
@sandrastrilakos99626 жыл бұрын
I solved it partly using logic and finished it using trial and error, but your method is so much better because it demonstrates the logic required to prove it is the only solution. I look forward to sharing this with my senior students.
@SamerShennar6 жыл бұрын
Way simpler: x=sqrt(2^y-615) So 2^y has to be > 615 By trial and error starting from 1024 we can quickly reach x an integer (59) at 4096.
@t_kon6 жыл бұрын
Ye prove it that that's the only answer
@Super_Smash_Dude6 жыл бұрын
That's interesting! I tried taking the log base 2 on both sides in order to isolate y.
@kienha90365 жыл бұрын
615 is divisible by 3, hence 2^y-x^2 is divisible by 3. Easily checking out we could see that 2-x^2 is not divisible by 3, then 2^y-0 or 2^y-1 is divisible by 3. Since 2^y-0 isn't, we can conclude that 2^y-1 is, then y is even
@marcoantonioreyessantos99774 жыл бұрын
I also started as Nayak's solution: x has to be odd, then x=2n+1. Then, we have that 4n(n+1)=2^y-616, or n(n+1)=2^(y-2)-154. Now I went with y-2>=8, and found y-2=10 and n=29, which give x=59 and y=12. Cheers, Marco.
@Pepa14pig4 жыл бұрын
I feel proud for solving this problem not only alone but also with different thinking :))
@kwcy923 жыл бұрын
Can you share your way?
@Pepa14pig3 жыл бұрын
@@kwcy92 Of course! It was a guessing game with math background 😂😂😂 We can rewrite the problem as 615=2^y-x^2 I know x will be an odd number (because 615 is odd and 2^y is always even). Because we know powers of two, we want a “bigger” number for y because difference needs to be 615 From there on I played a bit with numbers to see what happens when I use bigger x, smaller y... I started with x=y=9 and moved up by 5-10 for x and one for y and got there relatively fast. I know it’s not the best way to solve, but it worked 😂😂😂
@sjoerdwiesmeijer72315 жыл бұрын
Am I the only one who always gets depressed when he says:'Did you figure it out'? . 'cause I am already happy when I can follow his explanation.
@mirawenya3 жыл бұрын
Yep, I’m with you. Don’t usually even understand the explanation it seems.
@ihopeicanchangethisnamelat71083 жыл бұрын
the first thing i did when i saw this problem was google ‘what does solve over the integers mean?’. i promise you’re not alone.
@Acid313376 жыл бұрын
It's easy, wolframalpha cannot make a sandwitch, but I can!
@ffggddss6 жыл бұрын
What, make a witch out of sand? Well, it is nearly Halloween, after all. So I guess all you need is to go to the beach!! Fred
@yerr2346 жыл бұрын
but can you tho?
@silkyfirst30975 жыл бұрын
Dont provoke them wolfram alpha is listening
@TAT4guitar4 жыл бұрын
Did you try "sudo make a sandwich"? That usually does the trick
@willnewman97836 жыл бұрын
In this video, he looks mod 10 to get that y is even. But it is much easier to look mod 4 to get that fact. And also, a lot of people are saying they solved this by guessing and checking. While that does find a solution, it does not find a proof of the only solutions, which this video does.
@sapien1536 жыл бұрын
Nope. The video didn't prove that this is the only solution
@freddiehand65516 жыл бұрын
@Bragadeesh S yes it did
@sapien1536 жыл бұрын
My bad. Agreed
@Theo0x896 жыл бұрын
I'll see your mod 4 and raise you mod 3. In fact, modulo 3 you get 615 ≡ 0, x² ≡ 0 or 1 and 2^y ≡ (-1)^y, so y must be even.
@danmerget6 жыл бұрын
Neat. I used the mod 10 solution myself, which seemed more obvious to me since I count in base 10 and tend to notice base-10 patterns before considering other bases. (OK, I lie. I did briefly look at mod 2 first, but that only got me as far as "x must be odd" before I abandoned that approach and jumped to base 10. Mod 3 and 4 never occurred to me.)
@bearloscuro4 жыл бұрын
Here's how I solved this with paper and pencil. Rewrote expression as x^2 -2^y=-615. X^2 will always be a positive integer value, so 2^y must be some power of 2 greater than 615 where the difference between the two expressions has a (positive) integer square root. 2^10 = 1024 & square root of the difference (409) is not an integer, 2^11=2048 and square root of the difference (1433) is not an integer, 2^12=4096, subtracting 615 yields 3481. Since the last two digits of 3481 are 81, there is a good chance that 59 could be the square root. I tried that and it worked. Thus, x=59, y=12.Yes, I know intuition and trail and error aren't proper 'solutions.' Thanks for this channel!
@srimatresri5 жыл бұрын
2^y - 615 must be a square. Went on substituting y > 9
@bharatnotindia.62965 жыл бұрын
That's cool.
@oskarjung67385 жыл бұрын
One more analysis, that 2^y is always even so sum of of 615 and x^2 should also be even, which is possible when x^2 is odd. x^2 is odd when x is odd integer. Hence odd integral solutions of X is only possible.
@critisizerr2455 жыл бұрын
I also wwnt on substituting y value but soon after I though that this will not help me for IIT JEE I am in 10 Going go attempt jee in 2022
@critisizerr2455 жыл бұрын
But i got the answer by putting 12
@SuperLabelPerson5 жыл бұрын
I did the same thing. Once he started looking at digit repetition, I was like "y tho?"
@АртёмЗайчик-д3в5 жыл бұрын
When I first started to solve it, i gave up. But then I decided to try it again and got it, using (x-1)^2 = x^2 - (2x-1)
@indy1979054 жыл бұрын
I thought it was an algebra problem. Then I kept watching and my brain melted.
@kalliboymusic3 жыл бұрын
Same
@jasonterry19596 жыл бұрын
@mindyourdecisions I took a game theory class in college this past semester (spring 2018) and you would not believe the amount of times you were listed as a source.
@redthorne11294 жыл бұрын
I just started at 1024 and subtracted 615 from each power of 2 from there on. 3rd try, 4096. Obviously if it was something like 2^2000, that would take far too long, but for this one...worked in like 20 seconds. 1024 - 615 = 409 (not a square) 2048 - 615 = 1433 (not a square) 4096 - 615 = 3481 (59^2) I think this is why I hate traditional math problems, they make them simple enough that you can brute force an answer instead of doing the work. Got me through all my trig/calc classes in high school :D
@josephjames43262 жыл бұрын
I did the same in about 20 seconds, too!
@merveilmeok24165 жыл бұрын
Sometimes you come across a map problem and you think “I get it” and you “solve” the problem under a couple of minutes only to realize later the problem was above your “pay grade” and a much more complicated problem that you anticipated. This has happened to me back to back today ;)
@quahntasy6 жыл бұрын
I always depend on Wolfram Alpha for solving Equations in Physics. But this new information blows my mind. Now I have to go back and do all those tedious exercises from Goldstein.
@folf6 жыл бұрын
It works now 🧐
@spacefertilizer5 жыл бұрын
For mathematics, only use wolfram for getting hints toward a solution. Often wolfram does not give you all possible solutions or even managed to find them (this has happened to me a lot in calculus and even combinatorics). Try to understand the problem and the theory behind it and solve it from there. There are lots of mathematics that are not implemented yet in wolfram either.
@nonesuch276 жыл бұрын
As always with these videos, a lot of people don't grasp the concept of PROOF.
@arolimarcellinus85416 жыл бұрын
Well how do you say? There is no any proper explanation about proof. It's so abstract and we never realized we need to use inequalities for this kind of problem. You know in HS we always use regular method, but not with this long and tiring explanation only to find y=2n. How come common people realized that? Me as a Master degree student even cannot realize this
@heronimousbrapson8636 жыл бұрын
nonesuch27 Most people don't grasp the concept of proof. Proof is really only needed in the study of pure mathematics. For everyday applications of mathematics, you don't need proofs, just like you don't need a degree in automotive engineering to be an auto mechanic.
@qc1okay6 жыл бұрын
What? What does proof have to do with anything? The problem as worded says nothing about proof. It asks you to find x and y, only allowing integers. Period.
@dariobarisic35026 жыл бұрын
@@qc1okay If it asks to SOLVE the problem then it means you have to find ALL the solutions. If you find only ONE solution, you have to prove its the only solution. Otherwise you didn't solve the problem. Many people just say "easy, i guesed it in 3 tries", while that worked in this case because there's only one solution, it won't always work.
@qc1okay6 жыл бұрын
@@dariobarisic3502 No it doesn't. Just that simple. Solve does not mean all. This KZbin channel isn't a formal math class, and even if it were, its instructions must be clear to its viewers. If "all" were wanted, "all" had to be stated. Incidentally, I went thru the full process Presh used, and it both leaves out steps and overcomplicates others.
@prerakcontractor66096 жыл бұрын
Be honest and confess; how many of you guys checked whether wolfram alpha could solve this or not? Well, I did
@Packerfan1306 жыл бұрын
and can it?
@prerakcontractor66096 жыл бұрын
Nope
@dmitryronin68986 жыл бұрын
it actually gives you integer solutions if you type just the equation in it.
@KelfranGt5 жыл бұрын
I don’t see why not, and it was able to
@academyofmathematicalscien79864 жыл бұрын
kzbin.info/www/bejne/m3bcgqyfrbR6prc
@tamirerez25474 жыл бұрын
The approach of checking the last digits, as all simple thinking, is genius!! Great way to solve such a problem.
@paparazzi.worldwide Жыл бұрын
Well if there is a single solution then no doubt primary methods are way less complicated than other methods We have, 615 + x² = 2ʸ x² must be a +ve integer => 615 + x² > 615 ∴ possible values of 2ʸ are 1024, 2048, 4096 or greater. => 2ʸ - 615 = x² 2ʸ - 615 must be a square no. (i) 1024 - 615 = 409 (not a square no.) (ii) 2048 - 615 = 1433 (not a square no.) (iii) 4096 - 615 = 3481 (is a square no. ∴ possible value of 2ʸ can be 4096 => 2ʸ = 4096 => 2ʸ = 2¹² => 𝘆 = 𝟭𝟮 And, =>x² = 3481 ....[ by (iii) ] =>x² = ∓ 59² =>𝘅 = ∓ 𝟱𝟵 Thus, x= +59 or x = -59 And y = 12 No complications..
@Tailspin804 жыл бұрын
I solved this in about 60 seconds from the thumbnail. The right hand side has to be 1024 ... 2048 ... 4096 etc. So just keep trying until you find one which has an integer square root. Bingo - square root of 4096 - 615 is 59 (and -59). A familiarity with well known binary numbers helps. Because I solved it before I opened the video the no calculator rule didn’t apply. 🙂
@danielreese61854 жыл бұрын
Cool bean
@TamaraTkacova4 жыл бұрын
I‘ve been taking some number theory classes in my free time and we‘ve just started with modular arithmetics, and I was so happy when I got the solution before watching the video haha :) I did it mod 3 tho
@TechToppers4 жыл бұрын
Same here :D
@UniqueNCS5 жыл бұрын
Literaly just had this in a test yesterday and couldnt answer, cmon universe
@ritusaxena27145 жыл бұрын
Not possible
@nickh17982 жыл бұрын
WolframAlpha can now solve this exercise. Try "2^y= 615 + x^2 over integers", minus the quotes.
@bancodrut6 жыл бұрын
The solution to this problem really blowed my mind. The structure of it is the most imaginative and trickery of what I've encountered so far 😱 Thanks for sharing
@Oswald_Anthony5 жыл бұрын
Take the logarithm base 2 of both sides: Answer: y = log(x^2 + 615)/log(2) + ((2 i) π n)/log(2) for n element Z x = ± 59, y = 12 (that's a Wolfram's answer)
@kookoo2753 жыл бұрын
This is the first thing I thought, surprised I had to go so low to find this comment
@TheGeneralThings6 жыл бұрын
Brilliant! This is the content I can't get enough of.
@user-uc1hf8zm6k5 жыл бұрын
2^y , which means it could only be2,4,8,16,32... Therefore,just to find out which 2^y number can be square rooted after minus 615.There is 615, so we can start with 1024,2048,4096... then find out that the answer is x=59,y=12
@user-zb8tq5pr4x5 жыл бұрын
Thats a numeric solution, not analitic. Prove that that is the only solution.
@diedoktor3 жыл бұрын
I just did guess and check and found 59 as a solution for x. Obviously 2^y has to be greater than 615, so I started with 1024-615, which wasn't a perfect square, so I did 2048-615, then 4096-615. I found the square root to be 59. So -59 and 59 are solutions when y=12. I imagine there are infinite solutions. EDIT: The solution in the video is much more elegant, and also shows there is only one solution. Very cool.
@TitusObbayi3 жыл бұрын
I have to admit, when I first saw this problem I completely did not think it would be very complicated. Then I tried it and got stuck but I was still convinced there some basic algebra trick that I'm missing. Then after watching this solution, I realize there was no chance I was solving this without the explanation
@GinoTC6 жыл бұрын
Holy crap the captions got your name right. Well, there's a space between tal and walker but damn, I'm glad I've been checking every video haha
@thephysicistcuber1756 жыл бұрын
3:52 it was even easier to establish this by looking at the equation mod 3
@TechToppers4 жыл бұрын
That's bit advances. Presh Talwakar makes things intuitive.
@d4slaimless3 жыл бұрын
@@TechToppers not realy that hard. Every square is 0 or 1 mod 3, every even power of 2 is 1 mod 3, but every odd power of 2 is 2 mod 3. So the y is even. You would need to prove the initial statements though (but it's very simple).
@TechToppers3 жыл бұрын
@@d4slaimless I know it is simple. But if you can avoid technicalities, then why not!
@d4slaimless3 жыл бұрын
@@TechToppers I am not arguing that the solution in the video is very demonstrative. Just saying that going for the reminder of a division is not that hard either.
@ericzhu66203 жыл бұрын
wow i found a cuber under a maths video!
@mcovaleda5 жыл бұрын
Wolframalpha: isolate y on 615+x^2=2^y solves the problem
@ozanoruc37965 жыл бұрын
If you look at the equation in mod 3 it is clear that y is even which means that you can move x^2 to right side of the equation and do difference of two squares. And then try for positive divisors of 615
@steveholman59785 жыл бұрын
I solved this in about 3 minutes by simply listing the powers of two, subtracting 615, and looking for an integer square root. The first one even possible had to be more than 615, so I only had to check three powers of two before finding one with an integer square root.
@Akash-qy1gf6 жыл бұрын
I did trial and error method and solved it in 2mins.....2^9=512 & 2^10=1024, 2^y has toh be greater than 615, so consider 2^10 =1024, so 1024-615=409 which is not a Perfect Square, 2^11=2048, so 2048-615=1433 which is also not a Perfect Square, and then 2^12=4096, so 4096-615=3481 which is Square of 59. Thus x=59 and y=12
@MatchaLatte3605 жыл бұрын
Rahul Chhabaria sameee hahaha i tried 1024,2048, then finally 4096 and it worked!!
@samsonpl11105 жыл бұрын
-59 is second matching X :D
@ceegers5 жыл бұрын
This is what I did. No need to make it more complicated than it is :P
@Cohnan135 жыл бұрын
@@ceegers Actually, it is needed to prove that no other solutions exist
@speedsterh5 жыл бұрын
@@Cohnan13 Some people here don't what "solving" means
@hsman66145 жыл бұрын
Why did WolframAlfha give up when it reach x = 3?
@martinpiekarski15123 жыл бұрын
AI won't take over the world so soon.
@vladpetre56746 жыл бұрын
@Presh, had you constructed the proof the other way around, it would have been a lot closer to how people/ students think. Start with observing x^2 and that if y is even then you can do a^2 - b^2 = 615 which is easy to solve. Then prove that y cannot be odd, thus the only solutions are the ones where y is even (x = +/- 59, y = 12). The way you started it by observing y has to be even and then stating ("This will be a key in our finding the solution") makes you look insightful, but does not help people develop thinking patterns in math problem solving (especially Diophantine equations)
@akaRicoSanchez6 жыл бұрын
Well... I solved the problem the exact same way and in the exact same order. It's not really about being insightful but about using the fact integers are a strong constraint on the solutions.
@vladpetre56746 жыл бұрын
@Dan It's the same with last digit analysis. How do you know it is we need in this specific question? You don't know, but i bet factoring leads to results more often than last digit analysis.
@sarthakgupta43235 жыл бұрын
To chekc whether y is even or odd we can simply use 3 as x^2 gives remainder 0 or 1 when diveded by 3 and 2^y gives remainder 2 when y is odd and 1 when is even therefore y must be even
@fantiscious3 жыл бұрын
*I SOLVED THIS IN MY HEAD* . I barely know how and I can't show proof, but for the sake of it I'll show my thought process; - 2^y is observably a power of 2 - Because x² should always be greater than or equal to 0, we can tell that 615 + x² should be greater than or equal to 615 - recall the sequence of the powers of 2 starting from 2^0 (1, 2, 4, 8, 16... - 32, 64, 128... - 262144, 524288, 1048576 (seriously, i know them all up until that lol) - 2^y should then be greater than 615, so we can start checking for values of x when 2^y starts at 2^10 (a.k.a 1024) 615 + x² = 1024 x² = 409 - 409 is not a square, so x isn't an integer there - Check for when y = 11 (2^11 = 2048) 615 + x² = 2048 x² = 1433 - 1433 is not a square (I guessed that, I could've been wrong lol), so x isn't an integer here either - Check for when y = 12 (2^12 = 4096) 615 + x² = 4096 x² = 3481 - It came to my head that because of the "1" in "3481", x could POSSIBLY end with the digit 1 or 9 - I go through the squares of multiples of 10 (10² = 100, 20² = 400... 40² = 1600, *50² is 2500, 60² = 3600* ) - I notice that 3481 is between 50² and 60², so therefore 50
@nellvincervantes32235 жыл бұрын
Explain the Difference between Quasi-Static and Non Quasi-Static @Mindyourdecisions
@usualunusualkid71494 жыл бұрын
1) This isn't a physics channel 2) @s don't work anymore
@whiploadchannel20476 жыл бұрын
You can also find that y is even using mod 3. A little faster than mod 10
@whiploadchannel20476 жыл бұрын
Tom Domenge sure, (mod 3) 615 = 0, x^2 = 1 or 0, and 2^y = (-1)^y. So 615 + x^2 = 0 or 1. If y is odd, 2^y=(-1)^y = -1 which is impossible. So y is even
@anubis_056 жыл бұрын
hello please look into integrals by the Feynman technique
@jimvinci82954 жыл бұрын
I solved this directly by the substitution 2 to the yth power = a squared, which gets to the answer more quickly, although the remainder of the approach is similar to what was presented. The above approach leads immediately to (a-x)(a+x) = 615 and by substituting the four ways to factor 615 (41x 15, 123 x 5, 205 x 3, and 615 x 1), the only pair of factors that produce integer solutions is 5 and 123. a - x = 5 and a + x = 123 leads to a = 64 and x = 59, and since a squared = 2 to the yth power, 2 to the yth power must equal 4096, so y = 12.
@invincibleflesh45264 жыл бұрын
Came for the problem and found the solution on my own, actually watched the video to see if there were others.
@ronmadan80035 жыл бұрын
Who else used a different strategy, but found a much faster way to do it? My strategy was to try different powers of 2 (greater than 9). For example: 615 + x^2 = 2^11 (2048). This implies that x^2 = 1433. That isn't a square value (for a positive even integer), so I tried 615 + x^2 = 2^12 (4096). That meant x^2 was equal to 3481. Since 3481 is a square, I was able to solve for x and y.
@chaitanyasingh15655 жыл бұрын
Wish you could see my raised hand ✋ ✋
@thiantromp66075 жыл бұрын
Ron Madan but you never proved or showed that was the only solution. That is the challenge with these problems.
@zoetropo14 жыл бұрын
Try or not try, that is not the question. Use the force of logic, Luke!
@anuragmishra32824 жыл бұрын
I solved the equation in seconds using a chart containing square of numbers upto 100 It was easier than the method in the video
@PraneshPyaraShrestha6 жыл бұрын
Your videos are awesome
@PraneshPyaraShrestha6 жыл бұрын
@@iotaop9573 always always
@sumit37354 жыл бұрын
Mind your decision is best Chanel for students
@EduardvanKleef2 жыл бұрын
This solution is so brilliant, I'm stunned...
@silverbladeii5 жыл бұрын
Minha solução: Se "==" representa congruência, temos: 615+x²==x² (mod 3). 2ⁿ=/=0 (mod 3) →x²=/=0 (mod 3) →x²==1 (mod 3). 2ⁿ==1 (mod 3) →n=2a 615=2²ª-x²→ 615=(2ª+x)(2ª-x). Edit: ok, vamos testar todos os pouquíssimos casos: 615=3•5•41, além disso, 2ª+x>2ª-x. As únicas possibilidades são (supondo x≥0): 2ª+x=615 e 2ª-x=1→2•2ª=616. Abs 2ª+x=205, 2ª-x=3→2•2ª=208. Abs 2ª+x=41 e 2ª-x=15→ 2•2ª=56. Abs E 2ª+x=123 e 2ª-x=5 2ª=64, de onde segue que a única solução é a=6→n=y=12 e x=±59
@Gutagi5 жыл бұрын
parabens cara
@Gutagi5 жыл бұрын
Translation for english: My solution is: If "==" represents congruence then we have: .... Testing all the possible cases (which are just a few) , we have that the only solution is...
@silverbladeii5 жыл бұрын
@@Gutagi macho, são bem poucos casos
@Gutagi5 жыл бұрын
SilverBlade como assim ???
@silverbladeii5 жыл бұрын
@@Gutagi taí. Resolvido completo (mas é tão trivial que eu nem devia ter perdido meu tempo editando)
@kasperjoonatan60146 жыл бұрын
This was a very fine problem! It was good that 615 is quite easy to divide into prime factors, otherwise it wouldn't have been so easy without a calculator :)
@t_kon6 жыл бұрын
Dont do trial and error it's bad. First apply mod 3. 615 mod 3 = 0, and 2 mod 3 = -1, however x^2 mod 3 = 1 for x relatively prime than 3. Hence y must be even. Apply y = 2k and factorize it (2^k +x)(2^k-x) = 615. This is how you prove the only integer solution is (59, 12), (-59, 12)
@snuffeldjuret6 жыл бұрын
trial and error isn't bad, it is an extremely valuable tool in figuring things out. When applying math on the real world, trial and error is crucial.
@t_kon6 жыл бұрын
@@snuffeldjuret not really. Trial and error is useful in trying to solve any problems, but is never good to apply it directly. Why? Because you dont know if this trial and error pattern will continue on or not. There is not enough conclusion from just trial and error. It can gives you some valuable information but is never the way to go directly.
@snuffeldjuret6 жыл бұрын
@@t_kon I have no idea what you mean with "apply it directly" and "the way to go directly". I am merely pointing out that "Dont do trial and error it's bad." is a blanket statement that is not always true. You can argue that it is for this task, but it is not true for all possible tasks.
@albertmcchan6 жыл бұрын
Is doing mod 3 also trial and error ?
@SaiKiran-fd3gq5 жыл бұрын
Take mod 16 on both sides we end with x = +3 or -3 mod 16 .But 59 is neither .Where am i going wrong.
@TorBruheim5 жыл бұрын
Who on earth came up with this awesome solution? This is more a way of thinking and a method instead of traditional math. I have learned a lot from your videos, and I have expanded the way of seeing math solutions. Especially those solutions involving geometry. Thank you very much.
@SpaghettiToaster4 жыл бұрын
It is traditional math, a branch called number theory.
@Bhuvan_MS3 жыл бұрын
615+x²=2^y 2^y-615=x² Therefore LHS should be equal to a square of a number on RHS. x² always yields a positive number. So y cannot be negative in LHS. Also 2^y should be greater than 615 so that sum is positive. Therefore 2^y>2⁹... So I substituted values of 1024,2048,4096 and subtracted it with 615 to check whether difference is a square. On applying 4096, you get difference as 3481 which you can find square root by guessing that since it is between 2500 and 3600(50² and 60²) and it ends with 1(either 1² or 9²), it is near to 3600, which means square root of 3481 is equal to +-59 Hence x=+-59 and y=12
@jameskelly7455 жыл бұрын
I did it completely differentlymin my head in a third the amount of time it took to explain that solution
@trashtalking_bug5 жыл бұрын
r/humblebrag
@SpaghettiToaster4 жыл бұрын
Let me guess... you guessed it and now think you got a a proof.
@xVitOSx5 жыл бұрын
Thanks macOS for "Grapher"
@leo179216 жыл бұрын
7:36 so now you say this every time. ok.
@rudra-thandavam3 жыл бұрын
Y has to be even. There is no other way to solve the problem. Only if this ruled out, then we can check for Y as odd. But most cases such problems will come out easily when Y is considered as even. But good insights from you to check the combination of factors. I admit that I learned something new today. Thanks.
@iamrepairmanman5 жыл бұрын
If you move X^2 to the right and assume y=even, break it into (x+2^(y/2))(2^(y/2)-x). The prime factors of 615 are 1 3 5 and 41. 2^6 is 64. 41*3=123, 123-64=59, 64-5 is also 59, meaning we've found at least one answer, y=12 and x=+-59
@TheTck905 жыл бұрын
Don’t use calculator but count 2^9 and factor out 615 :D
@minghaoliang43115 жыл бұрын
That wasn't that hard, was it?
@washizukanorico5 жыл бұрын
You need a calculator for the first few powers of two? Like really?
@AvelinoTiago5 жыл бұрын
The worst students know 2 powers from 0 to 20
@SpaghettiToaster4 жыл бұрын
@@AvelinoTiago No.
@harold3515 жыл бұрын
If you do trial and improve it's easier I got it in less than 5 minutes
@jujujulost12325 жыл бұрын
Thing is finding a solution by trial and error doesn't prove there's no other solution
@markcross1095 жыл бұрын
Apply simultaenous equation and it's done in a second.
@danielgyasi69425 жыл бұрын
How??
@johnconway80705 жыл бұрын
One of the most enjoyable problems I have seen for quite a while . Finding the solution as explained by Presh is not easy but it *is* very satisfying . Me, I simply used the trial and error method! Noting that 2^y had the be *at least* 2^10, I only had to try 1024 minus 615 , 2048 minus 615 and 4096 minus 615 to find which of these three differences gives a perfect square . Not a whole lot of work !
@johnm6011 Жыл бұрын
Me too.
@ayushjangid4 жыл бұрын
I really did it within 30 sec. without any use of calculator or computer. I just got that x must be odd and y must be even by the next moment as i saw the question. And i just started to put the values of y and when i came to y=12 my intuition helped me that it must be a square of some no. because I thought i have seen this no. Before also and there my intution worked
@goodjob8226 жыл бұрын
WolframAlpha solve it for now
@paulhofman30326 жыл бұрын
Im gonna be honest with yall. I didnt managed to do it.
@abhinavchauhangujjar64565 жыл бұрын
I solved for x X=√2y−615
@d8007451cacf49b4d7d05 жыл бұрын
My solution is as follow (the main points are quite similar to the video but approach is a bit different): 615 is divisible by 3, 2^y is not, hence x^2 is not divisible by 3. If x^2 is not divisible by 3, the remainder when x^2 divide 3 can only be 1, hence 2^y divide by 3 will have remainder of 1. 2^y divide by 3 will have remainder of (-1)^y, hence y must be even. We can rewrite the equation as: 615 + x^2 = 2^(2t) -> 615 = (2^t)^2 - x^2 -> 615 = (2^t - x)(2^t+x) Since y must be positive. We just need to solve for positive x as well -> 615 > 2^t + x -> t y 615 -> y >= 10. We have y is an even number from 10 to 18. Try all value and we find y=12 and x=59 or -59
@mthreapl4 жыл бұрын
Wolfram Alpha has no problem solving this. Just enter Reduce[{615 + x^2 == 2^y, x \[Element] Integers, y \[Element] Integers}] and you'll get both solutions.
@RajeshYadav-md9eh6 жыл бұрын
Really very imaginary method.... Interesting....
@AlexanderBukh6 жыл бұрын
imaginative? (i'm not native english speaker)
@satyaprakashg18905 жыл бұрын
Solved it in 1 minute...by substitution method!!!😊😅😅
@satyabratshanu53905 жыл бұрын
Same
@SushilKumar-oh1vf5 жыл бұрын
Bro there wasn't 2 equations, how did you solve it plz tell
@m.3lalli4915 жыл бұрын
If a scientist couldnt solve it, Why would I
@y.z.65175 жыл бұрын
All competent scientists can solve that. It's easy.
@pedrojose3924 жыл бұрын
Good morning! It is a intersting problem. There are some problems that folow this line, e.g., find the integers that (xy-7)^2=x^2+y^2. You can complete the square at the right side. And you get: (xy-8)^2-(x-y)^2=15. So you have to prove that y is even. If y is odd, y=2 mod3 and then x^2=2 mod3, absurd. y is even. y=2a and (2^a+x)*(2^a-x)=615 and so on...
@l.w.paradis21083 жыл бұрын
This is so cool. I've just been casually watching, and got up to the 3-minute mark on my own. I thought of the first steps without watching. So, these videos are putting me on the right path to figuring out cool problems. THANK YOU.
@leeoldershaw9564 жыл бұрын
You can solve fast by inspection like in a SAT test by trying numbers. The power Y of 2 has to be bigger than 615 or Y>9. You only have to try the next 3 values of Y before you find a value of X that has an integer square root, 3481. You don't even need to do the square root, The squares of 50 and 60 are 2500 and 3600 so look for a number between them whose square ends in 1. 9 does so trying 59 as X works and solves the problem when Y =12. If it were a SAT question there might be answer choices that include 59 and +/-59 so that might trip you up.
@italixgaming9153 жыл бұрын
We can eliminate all values of y
@twinksy902 жыл бұрын
X^2=2^y-615. For x^2 to be positive, y is at minimum 9. Then increase y incrementally until 2^y-615 is the square of an integer.
@sonofsparda97675 жыл бұрын
I solved it by matching using difference of squares formula. Any composite number (which has more than 2 divisors) can be presented as difference of squares, so we need to present 615 as difference in some powers of 2 and some number, so: 615 = 5x123 = (64-59)(64+59) 64^2 = 2^12 x = 59, y = 12
@caplexian_5799 Жыл бұрын
This problem can also be solved by expressing 2^y-615 in a square form (2^(y/2)-A)^2. Here, 2^(y/2) and A must be positive integers. Otherwise, both 2^(y/2) and A are a square root of 2 multiplied with some positive integers. However, this means that x^2 is an odd power of 2 multiplied with some odd integer, which is impossible when x is an integer. From the equation A×2^(y/2+1)-A^2=615, we can check that A is a divisor of 615 such that A+615/A is a power of 2. Since 615=3×5×41 and 5+3×41=2^7, it follows that A equals either 5 or 123. In either case, we have y=12 and x=+-59.
@DanielSecoForsnacke6 жыл бұрын
Here's what I did. Yes, y is at least 10 for the same reason, it can't be odd for the same reason and... it can't be 18 or more: when y is even, take its square root substract 1 and square again using the typical binomial expression, and you get something smaller than 2^y-615, since 2^(y/2+1)-1 will be bigger than 615. Therefore there can't be any integer solution in those cases. For y=10,12,14,16, one could just check manually, but since x needs to be odd, the next possibility after (2^(y/2)-1) is (2^(y/2)-3) which will rule out y=14 and y=16. Then check that 2^10-615 is not a perfect square and 2^12-615 is.
@BruceBalden3 жыл бұрын
Set z=y/2. Then 615=(2^z+x)(2^z-x). Factor 615 and you quickly find z=6 and x=59 or -59. I do not initially assume z is an integer but the final result is an integer as hoped for
@MattyQ19753 жыл бұрын
Just a process of writing down the integers of 2 and then taking away 615. 4096 - 615 = 3481. I knew 60^2 = 3600, calculated 59 x 59 = 3481; 615 + 59^2 = 4096 or 2^12. Used pen and paper, but this is just an extension of elementary maths taught in most primary schools - multiplication and addition with a bit of deduction and logic to speed up the process.
@marcindebicki11994 жыл бұрын
I did figure this out however used a different approach: 1. x * x will always be a positive and therefore left side will always be positive, and at least 615 (615 + 0 * 0) 2. Right side is a power of 2 so it can take values: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. First 10 can be ruled out as they are lower than 615 (see point above) and therefore Y needs to be at least 10. 3. From there it takes only checking possible values o Y. For Y = 10 X is not a natural number, same for Y = 11. for Y = 12 left side can be reduced to X * X = 3481 which can be then easily verified that X is and integer and can be 59 or -59 (question was about integers and not just natural numbers). I though admit that for more complex equations (or bigger numbers) your solution is easier to follow.
@rcnayak584 жыл бұрын
In fact, we have made it a complicated one while solving it. Consider, 2^y = k. Now our equation is k -x^2 = 615. This could be written as (sqrt(k) + x)( sqrt(k) -x ) = 615. Therefore, 615 has two factors m and n (say) such that m x n = 615 where m = (sqrt(k) + x) and n = ( sqrt (k) - x). And also sqrt (k) = (m+n)/2 ans x = (m+n)/2. We have now 4 pair pairs of such values. They are (i) m = 615, n = 1 (ii) m= 205, n = 3 (iii) m = 123, n = 5 and m = 41, n = 15. Now we calculate the values of sqrt(k) and x for all these pairs of m and n as explained above. Now we have (i) sqrt(k) = (615+1)/2 = 308, x = (615-1)/2 = 307 (ii) sqrt(k) = (205+3)/2 = 104, x = (205-3)/2 = 101 (iii) sqrt(k) = (123+5)/2 = 64, x = (123-5)/2 = 59 and (iv) (41+15)/2 = 28 and x = (41-15)/2 = 18. If we observe the values of sqrt(k) in 4 alternatives, only in (iii) which is 64, it can be only expressed as a power of 2 while others are not. So this pair is the right answer. Now sqrt(k) = 64 = 2^6, so that k = 2^12. As we have assumed 2^y = k, y is now 12 and x =59.