Remainder & Factor Theorem (1 of 2: How do we calculate remainders without dividing?)

  Рет қаралды 74,888

Eddie Woo

Eddie Woo

Күн бұрын

Пікірлер: 46
@everettmeekins1582
@everettmeekins1582 7 жыл бұрын
I see that you don’t have a part 2 up yet, but in that part are you going to also mention the remainder theorem also works when the divisor is not monic/linear. I remember a contest problem like that, where the polynomial was divided by x^2-1 and is asked for R(x). It was so easy once you did it for x=1 and x=-1, because then you can find the line that passes through it and that will be the remainder. Great explanation btw!
@jacuplex157
@jacuplex157 6 жыл бұрын
That's because you can factor x^2 - 1 into (x+1)(x-1). Notice how if both of these terms can divide into the original polynomial then the polynomial is divisible by x^2-1. However, the remainder theorem usually only works for monomials, so I wouldn't recommend using it for dividing any other polynomials UNLESS you can factor them into monomials.
@everettmeekins1582
@everettmeekins1582 6 жыл бұрын
Jacuplex I probably overstated myself a bit. If it asked for the remainder when dividing by x^2+2x+9 it would not work because the quotient term would still be relevant, as the divisor would not be zero for any x. And the unique quotient (assuming the original polynomial was of degree n) would be a polynomial of n-2 (in this particular case since we are dividing by a polynomial of degree 2), which would require n-1 points, and then there is other stuff to deal with, and you may as well divide. So I would personally say it still “works”, but it isn’t useful
@srijanpal2654
@srijanpal2654 7 жыл бұрын
BEAUTY GOT A DEFINITION....
@mysterykid9518
@mysterykid9518 7 жыл бұрын
Greetings Mr. Woo, your lecture's wonderfully delivered as usual! However, there's an error that you made which was perhaps just a slip of the tongue, i.e. at minute 4:50 you stated that "If a divisor D(x) is of degree n, then the remainder R(x) is of degree (n-1)", which is not true in general. A simple counterexample would be the following: Take P(x)= x^4 + 2x + 3, divide it by D(x)=x^3+1, we will get R(x)=x+3 as our remainder. Note that D(x) is cubic, yet R(x) is not quadratic, but linear. A correct statement would be "If a divisor D(x) is of degree n, then the remainder R(x) is a polynomial of degree *at* *most* (n-1)".
@dextro9322
@dextro9322 4 жыл бұрын
divisor is linear, but your divisor is cubic
@soumilagarwal7765
@soumilagarwal7765 4 жыл бұрын
@@dextro9322 eddie just said that the degree of the remainder is 1 less than that of the divisor. So, in @Mystery Kid's example, the remainder's degree should've been 2, but it was actually 1. So Mystery Kid is right.
@Tech_Gamers
@Tech_Gamers 4 жыл бұрын
@@soumilagarwal7765 mystery kid is a mystery
@zes3813
@zes3813 3 жыл бұрын
wr
@hamxahaxer7828
@hamxahaxer7828 3 жыл бұрын
You are correct to the best of my knowledge! yes you are a mystery indeed!
@ivonnehamukoto317
@ivonnehamukoto317 3 жыл бұрын
now i understant very well,, thank you for this!
@gouravpanseja7236
@gouravpanseja7236 4 жыл бұрын
How did you kept ‘x' equal to ‘a'?
@itscxzmical1062
@itscxzmical1062 4 жыл бұрын
shouldn't the remainder be 70/x+3
@Dylan-vf6jx
@Dylan-vf6jx 4 жыл бұрын
It should be but it’s just how you define it. For me it goes : P(x)/D(x) = Q(x) + reminder/D(x) . So our definition is that the reminder is reminder/D(x), at least that’s what i’ve been taught in the u.k. And then multiplying that equation by D(x) : P(x) = q(x)d(x) + r(x) which is on the right side of his whiteboard.
@vivvpprof
@vivvpprof 4 жыл бұрын
@@Dylan-vf6jx Quite right, except it's remAinder, because it remains, not reminds.
@aloisdasilva7269
@aloisdasilva7269 7 жыл бұрын
Really interesting
@Atapd
@Atapd 2 жыл бұрын
Which institute does he teach?
@MarvynG
@MarvynG 10 ай бұрын
Australia is all I know
@movieslover2565
@movieslover2565 7 жыл бұрын
teach me about cyclic factorization
@pani_o4586
@pani_o4586 3 жыл бұрын
Doesn't x=a make the divisor x-a=0, then how would the original term p(x)/0 be defined
@leochinchillaa
@leochinchillaa 3 жыл бұрын
p(a)=(a-a)Q(x)+R p(a)=(0)Q(x)+R (0)Q(x) is going to be equal to 0, so 0+R is going to be equal to P(x) P(x) in this form is not being divided. It is on the other side of the equal sign and is unaffected by multiplying by zero
@JillahNate
@JillahNate Жыл бұрын
It helps me alot in understanding how to calculate the remainders, but i can't seem to see the working out properly,its to blurry.😔😔
@mwerensteijn
@mwerensteijn Жыл бұрын
Thank you so much
@blakeparker6588
@blakeparker6588 5 жыл бұрын
thanks for your video
@fazepug1982
@fazepug1982 3 жыл бұрын
I'm a little confused, would the remainder be -70/x+3 at 3:58? Or is it -70 because the remainder is always one degree less than the divisor, which in this case was a degree of one. Even if that's the case, I've seen examples where it would write the answer as -70/x+3 because the Dividend was dividing by x+3, and if the remainder is -70/x+3 it would have a reminder with degree negative one since (-70)(x+3)^-1= -70/x+3 thanks to anyone who answers
@elaine3867
@elaine3867 3 жыл бұрын
I think the remainder at 3:58 is just -70 You might want to write this on a paper because it's hard to read in this format: x^3 - 4x^2 + 2x -1 = (x+3)(x^2 - 7x + 23) - 70 is also (x^3 - 4x^2 + 2x -1)/(x+3) = x^2 - 7x + 23 - 70/(x+3) where you would write the -70/x+3 Do you see it now? ((Hope this helps
@fazepug1982
@fazepug1982 3 жыл бұрын
@@elaine3867 yeah I see it now, writing on paper really helps with the understanding, thanks!
@elaine3867
@elaine3867 3 жыл бұрын
@@fazepug1982 happy to help :)
@abirsheikh546
@abirsheikh546 3 жыл бұрын
if P(x) = (x-a)Q(x) + R & x = a, doesn't it mean that we are dividing P(x) with 0? Plz explain it to me, I'm not good at math.
@qishunliao1837
@qishunliao1837 Жыл бұрын
nah ur just making it into a form of P(x)=R, remember x=2 in this case, not zero
@zes3813
@zes3813 3 жыл бұрын
wrr, relaxed any nmw, no such thing as cost or etc
@palakbiyani8695
@palakbiyani8695 3 жыл бұрын
Any ICSE 10th student here?
@HEXAboi
@HEXAboi 3 жыл бұрын
Ya i am here
@nothing...8642
@nothing...8642 Жыл бұрын
Yep
@luluboo24
@luluboo24 10 ай бұрын
Yes sir 😔😭
@Atapd
@Atapd 2 жыл бұрын
Eddie wooooooò
@lalit.vermaaa
@lalit.vermaaa 7 жыл бұрын
what is polynomial
@cringeboy5728
@cringeboy5728 7 жыл бұрын
First
@Atapd
@Atapd 2 жыл бұрын
4:20 lol
@srijanpal2654
@srijanpal2654 7 жыл бұрын
SECOND
@Atapd
@Atapd 2 жыл бұрын
Kids playing on pc?
@yuvrajscartoons2528
@yuvrajscartoons2528 3 жыл бұрын
Is this AMERICA's channel
@thatomofolo452
@thatomofolo452 4 ай бұрын
Long division
@yuvrajscartoons2528
@yuvrajscartoons2528 3 жыл бұрын
I am INDIAN
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
Les nombres imaginaires de l'informatique 🌶️
27:04
Science4All
Рет қаралды 2,9 М.
Long Division of Polynomial
9:10
GoTutor Math
Рет қаралды 21 М.
Dividing by zero?
9:09
Eddie Woo
Рет қаралды 8 МЛН
Mathematics N3 Simplify , Factorise  Factor and Remainder Theorem November 2018
14:54
Maths Zone African Motives
Рет қаралды 8 М.
Factor and Remainder Theorem
12:12
Starfish Maths
Рет қаралды 128 М.
The Factor Theorem
11:44
1st Class Maths
Рет қаралды 48 М.
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН