Mod-01 Lec-01 Recapitulation of equilibrium statistical mechanics

  Рет қаралды 73,439

nptelhrd

nptelhrd

Күн бұрын

Пікірлер: 33
@alekseiegorov9857
@alekseiegorov9857 7 жыл бұрын
The best lecturer I've ever see! Thank you from Russia!
@elamvaluthis7268
@elamvaluthis7268 2 жыл бұрын
Issacciappan Issacciamman tamizh country God and Godess.Issac Christian names derived from this.Russian names ending with skie derived from Issacci.example xelenski.Alexie etc.
@LetslearnwithAshu001
@LetslearnwithAshu001 3 ай бұрын
Hello is professor V.Balkrishnan(IIT Madras)❤
@nevertheless123
@nevertheless123 4 жыл бұрын
Prof. Balakrishnan is one of the greatest physics lecturers in history. These recordings are a treasure.
@abdullahfaraj9931
@abdullahfaraj9931 8 жыл бұрын
the grestest physics teacher in our time :)
@maujo2009
@maujo2009 8 жыл бұрын
NPTELHRD: We implore you to upload a course on QFT taught by Prof. Balakrishnan!
@kevinlovephysics
@kevinlovephysics 8 жыл бұрын
Yes! And maybe condensed matter field theory too!
@vishnuteja7522
@vishnuteja7522 8 жыл бұрын
Yes! It will be a great learning platform for generations to come..
@movax20h
@movax20h 5 жыл бұрын
These are absolutely amazing lectures! I do feel some derivations are a bit sketchy and not fully explained in some videos, but it is not horribly bad. If professor Balakrishnan, could make full courses on a thermodynamics and statistical mechanics, and maybe classical field theory, as a pre-course to this nonequlibrium statistical mechanics videos, it would be amazing full statistical mechanics course. And as a post-course a condensed matter field theory and QFT. Greetings from Switzerland.
@vivekpanchal3338
@vivekpanchal3338 Ай бұрын
Agree with you brother, That one playlist on statistical mechanics is not complete course, if @nptel arrange it, it will be blessings for us.
@kevinlovephysics
@kevinlovephysics 8 жыл бұрын
So good! Strongly wish to watch courses on condensed matter field theory taught by Prof. Balakrishnan!
@supern0is349
@supern0is349 4 жыл бұрын
this guy is such a great teacher
@elamvaluthis7268
@elamvaluthis7268 2 жыл бұрын
Very very excellent lectures.
@hemanthkotagiri8865
@hemanthkotagiri8865 5 жыл бұрын
Prof. V. Balakrishnan is the Indian Walter Lewin. Thank you so much!
@sonjak8265
@sonjak8265 4 жыл бұрын
Prof. V. Balakrishna is much better.
@leandra3269
@leandra3269 4 жыл бұрын
@@sonjak8265 Deeply true, I have no difficults in understanding his lecture as undergrraduate though my maths sucks
@bremswitten7672
@bremswitten7672 3 жыл бұрын
@@sonjak8265 I disagree, this is not an objective statement. Both of them have different audiences and different focus points in their teaching, Walter Lewin's lectures are freshman (1st-year undergrad, extension of JEE Physics) level, his focus is to teach elementary and basic principles of the physical world and he makes physics come to life by using countless demonstration often risking his own life (not literary since enough care and precaution is taken but still considering his age, it's pretty insane) if a student religiously masters his course, basics of physics will be drilled into them. Balakrishnan teaches a more mature audience, his focus lies on Mathematical formulation, and key subtleties and principles of Physics, he does a great job at that. A more mature, theoretical person, a 2nd or 3rd-year undergrad would prefer his lectures and not Lewins, cause those are elementary and basic.
@ravithejakandalam449
@ravithejakandalam449 2 жыл бұрын
An absolute legend!
@movax20h
@movax20h 5 жыл бұрын
So, even in this picture I do have an issue with Omega. If we focus on positions and momentums of N particles, then Omega is infinite anyway, as there are no discrete amount of positions and momentums for any given particle. Some discrete-continues approximation in limit maybe would work, but that probably leads to some fancy renormalization techniques.
@sowrabhsudevan9119
@sowrabhsudevan9119 4 жыл бұрын
You could just discretize the phase space volume. You can just count microstates in volume space as volume/a^3 where a is some arbitrarily small number. Finally what is relevant is not total Omega but derivatives of log of omega. The arbitrary "a" disappears in this differentiation. It is not required, but with hindsight from quantum mechanics argue that this discretization is justified by the fact that dx*dp is of the order of planck's length.
@동형김-v2j
@동형김-v2j Жыл бұрын
I wonder if this book contains exercises
@MohdSameer-rx9gj
@MohdSameer-rx9gj 5 жыл бұрын
Will anyone please tell me for which course are these lectures?
@raghulsankar1153
@raghulsankar1153 2 жыл бұрын
non equillibrium statistical mechanics
@manukumarsharma4160
@manukumarsharma4160 7 жыл бұрын
can anyone tell me ,what is the level of this course, I mean undergraduate or postgraduate ,or above these
@VinayVaibhav
@VinayVaibhav 7 жыл бұрын
postgraduate or above.....This course assumes at least two courses on statistical mechanics
@priyankagoel2033
@priyankagoel2033 7 жыл бұрын
Post graduation
@wujiewang8781
@wujiewang8781 8 жыл бұрын
Anyone knows what book this lecture series is based on?
@priyankagoel2033
@priyankagoel2033 7 жыл бұрын
Patharia book
@sidddddddddddddd
@sidddddddddddddd 4 жыл бұрын
There are several references to follow from: 1. V. Balakrishnan, Elements of Nonequilibrium Statistical Mechanics, Ane Books, Delhi & CRC Press, 2008.(Chapters 1-4, 6, 9, 11-13, 15-17.) 2. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, Levant Books, Kolkata, India, 2005. (Chapters 1, 5, 8.) 3. K. Huang, Statistical Mechanics, 2nd edition, Wiley, New York, 1987. (Chapters 3, 4, 16, 17.) 4. M. Kardar, Statistical Physics of Fields, Cambridge University Press, Cambridge, 2007. (Chapters 3, 4.) 5. R. Kubo, M. Toda and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Springer-Verlag, Berlin, 1985. (Chapters 1, 2, 4.) 6. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd edition, Pergamon, New York, 1980. (Chapter 12.) 7. G. F. Mazenko, Nonequilibrium Statistical Mechanics, Wiley-VCH, Weinheim, 2006. (Chapters 1, 2, 7, 8.) 8. H. Risken, The Fokker-Planck Equation, Springer-Verlag, New York, 1996. (Chapters 2-4, 6.) 9. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, Oxford, 1989. (Chapters 1, 3, 5, 6, 10-12.)
@pranayvenkatesh8815
@pranayvenkatesh8815 2 жыл бұрын
@@sidddddddddddddd Thank you very much
@ivansukin721
@ivansukin721 Жыл бұрын
I would personally add S. Ma, Modern Theory of Critical Phenomena, Routledge, 2019 to this list.
@SphereofTime
@SphereofTime 6 ай бұрын
1:00
@अज्ञातकीओर
@अज्ञातकीओर 6 жыл бұрын
Thankyou so much sir........
Mod-01 Lec-02 The Langevin model (Part 1)
52:25
nptelhrd
Рет қаралды 35 М.
Teach Yourself Statistical Mechanics In One Video | New & Improved
52:51
Caleb Pressley Shows TSA How It’s Done
0:28
Barstool Sports
Рет қаралды 60 МЛН
Вопрос Ребром - Джиган
43:52
Gazgolder
Рет қаралды 3,8 МЛН
Statistical Mechanics Lecture 1
1:47:39
Stanford
Рет қаралды 714 М.
Nonequilibrium Statistical Mechanics I - Chris Jarzynski
1:13:45
ICAM - I2CAM
Рет қаралды 12 М.
Mod-01 Lec-20 Classical statistical mechanics: Introduction
1:06:12
Statistical Mechanics Lecture 9
1:41:07
Stanford
Рет қаралды 103 М.
Teach Yourself Statistical Mechanics In One Video
52:39
Physics Daemon
Рет қаралды 35 М.
1. Thermodynamics Part 1
1:26:25
MIT OpenCourseWare
Рет қаралды 1 МЛН
Mathematical Physics 01 - Carl Bender
1:19:24
剿匪大業
Рет қаралды 793 М.
Lecture 1 | Modern Physics: Statistical Mechanics
2:00:52
Stanford
Рет қаралды 296 М.