Model Predictive Control - Part 2: Numerical Methods for MPC (Lasse Peters)

  Рет қаралды 14,126

Cyrill Stachniss

Cyrill Stachniss

Күн бұрын

Пікірлер: 17
@1volkansezer
@1volkansezer 3 жыл бұрын
Very nice wrap-up, thank you Lasse!
@hasinabrar3263
@hasinabrar3263 2 жыл бұрын
This is brilliant, You sir is a legend.
@mathiaswittig5249
@mathiaswittig5249 Жыл бұрын
Tanks for those 2 videos!
@andreasteriete5616
@andreasteriete5616 Жыл бұрын
Thanks for these lectures. What I don't understand is part of you motivation to use Dynamic Programming LQR to speed up the calculation of the inverse of the H matrix. Are you really interested in the inverse of the H matrix or do you simply need the solution of the linear system, which is way easier to compute?
@vivekbagaria3324
@vivekbagaria3324 2 жыл бұрын
Thanks for the explanation. It was crystal clear!
@xuanchenzhang1056
@xuanchenzhang1056 2 жыл бұрын
would you give lectures about solving NMPC by SQP and IP?
@e55c63
@e55c63 2 жыл бұрын
amazing explanation!
@tejasstanley
@tejasstanley 6 ай бұрын
Hallo, are the slides for this lecture available online.
@CyrillStachniss
@CyrillStachniss 6 ай бұрын
Yes they are. Send ma an email
@kaiscott8345
@kaiscott8345 Жыл бұрын
Is there any PPT of this course to download? Thanks
@1volkansezer
@1volkansezer 3 жыл бұрын
I would like to ask, where did we consider the input and state constraints (u is an element of U; x is an element of X), during both batch LQR and DP-LQR solutions? Both of the are based on LQR optimization which does not consider these constraints; or I am missing something :).
@lassepe
@lassepe 3 жыл бұрын
Thank you for the question. As pointed out around 6:35, for the scope of this lecture we do not consider state and input constraints. Thus, with the tools developed here you would have to encode these as soft constraints as part of the cost (e.g. penalize states outside X and inputs outside U). If you are interested in learning more about how to explicitly incorporate constraints in this framework, I recommend reading Chapter 17 and 18 of "Numerical Optimization" by Nocedal and Wright. There exist various methods for applying these ideas to the very framework of iLQR; for example [this paper](bjack205.github.io/papers/AL_iLQR_Tutorial.pdf) discusses Augmented Lagrangian methods for incorporating constraints in the framework presented in this lecture.
@1volkansezer
@1volkansezer 3 жыл бұрын
Thank you for this clear answer. I thought that it was just a temporary simplification and we would see how to consider those constraints somewhere in the video. Since one of the most critical advantages of MPC over LQR is taking into account of those constraints, a Part-3 video would be perfect to complete the series; in order to illustrate how those constraints are handled in MPC. And thank you very much again for this nice wrap-up.
@userjdufer466
@userjdufer466 8 ай бұрын
nice!
@sarveshgaonkar7507
@sarveshgaonkar7507 2 жыл бұрын
Did anyone tried getting the Reformulated J after substituting the X = Axinit + Bu in the cost function. Its different when i tried, the term 2xinitFU doesnt is little different
@mohamedgbreel8618
@mohamedgbreel8618 3 жыл бұрын
awesome!
@yormanjorcetquispechavez3330
@yormanjorcetquispechavez3330 3 жыл бұрын
Subtitules please 😭😭😭🙏🙏
Data-driven MPC: From linear to nonlinear systems with guarantees
1:06:28
Introduction to Trajectory Optimization
46:40
Matthew Kelly
Рет қаралды 92 М.
She wanted to set me up #shorts by Tsuriki Show
0:56
Tsuriki Show
Рет қаралды 8 МЛН
Kalman Filter & EKF (Cyrill Stachniss)
1:13:36
Cyrill Stachniss
Рет қаралды 83 М.
Robot Localization - An Overview (Cyrill Stachniss)
40:22
Cyrill Stachniss
Рет қаралды 9 М.
MPC from Basics to Learning-based Design (1/2)
58:26
Alberto Bemporad
Рет қаралды 29 М.
Self-Driving Cars: Perception - Part 1 (Jens Behley)
1:14:09
Cyrill Stachniss
Рет қаралды 7 М.
Model Predictive Control
12:13
Steve Brunton
Рет қаралды 272 М.
Alberto Bemporad | Embedded Model Predictive Control
58:33
Michigan Engineering
Рет қаралды 45 М.