Besides the occasional issues with the video itself, this was a very great demonstration. Excellent job!
@fzndn-xvii7 жыл бұрын
When a KZbin video explains explains better than your professor. Thanks!
@joshii4537Ай бұрын
Lmao I had a course where the prof just showed us this guys videos
@amarthya.t984211 ай бұрын
Even after 9 years of upload this is just great demonstration. thank you mate.
@FRANCISCORODRIGUEZ-vq2jj6 жыл бұрын
my professor wasn't able to teach me in a 3 hour class period what you just taught me in 11 min and 36 seconds. thank you so much!
@ZacMitton4 жыл бұрын
Or 5 minutes at 2x speed
@ianchen19624 жыл бұрын
@@ZacMitton haha
@ko-Daegu2 жыл бұрын
@@ZacMitton I watched at 1.5 while skipping
@MyOneFiftiethOfADollar Жыл бұрын
The difference is you did not sleep during this video AND of course it was your professor's fault for not being able to keep you awake. Be accountable for your own learning outcomes rather than blaming others.
@rcollins06188 жыл бұрын
Such a simple demonstration really beats trying to learn this from just reading formal notation. thank you very much! (I often have this trouble with discrete math - it's not hard stuff, I just get caught up in keeping all the variables in my head).
@outlaws92958 жыл бұрын
Exact same issue here, man. I took one look at this process (or at least a very similar one) in my textbook and it made little to no sense. Once I saw this video, the process became crystal clear. I know that the formal notation is mathematically correct, but it's usually not the best way to demonstrate a concept for the first time.
@jsteezeful5 жыл бұрын
This is so good it also makes me question my professor and their pathetic book that tries to explain this in 2 paragraphs.
@sampugh64046 жыл бұрын
This just saved me on security homework. Thank you so much. Very cool concept
@alexrobert46146 жыл бұрын
Best tutorial out there. My prof sucks. Took me 2 days to understand fully. Thank you
@psychedelicfungi9 жыл бұрын
One very helpful video! Thanks! (Unfortunately the screen flicker was really distracting)
@alexisreynolds42772 жыл бұрын
Finally a good example! I looked at so many videos that didn't help before finding this one. Thank you!
@deano50z6 жыл бұрын
Excellent video, followed along with a notepad and pen and understood it less than 10 mins later. Thanks pal!!
@kdpoint42216 жыл бұрын
it took 3h to get a perfect explanation..... thanks a lot
@joshuagroeschl70013 жыл бұрын
This is most stupendous indeed, I was struggling with this conceptually for some time before stumbling across this video. I appreciate you for taking the time to curate these works! Excellent example and explanation.
@terriblast80768 жыл бұрын
One of the best tutorial I've watch..You discuss well
@NicholasGorsich2 ай бұрын
from 2024, incredible video, helped me out lots!!!
@rajatsingh8143 Жыл бұрын
best explanatioon in the world saved me for exam
@DVRhm253 жыл бұрын
I watched this drunk. It all makes sense. Nice work prof!
@b34amanahmed Жыл бұрын
He is brilliant and excellent Once look into this u will find ur solutions
@krichard125 жыл бұрын
Thank you, you saved my grade on today's exam.
@costerchimbwanda39369 жыл бұрын
saw the screen flickering..thought t was a problem with my pc..anyway was a great illustration
@jiaxinli16744 жыл бұрын
Thanks for saving my ICS 6D
@NOSHEDMANTIS7 жыл бұрын
Great Video, clear explanation and good audio quality (essential).
@cbabrunal Жыл бұрын
In a few minutes you explain what my university professor couldn't in months
@matkenis30136 жыл бұрын
I was looking for modular exponentiation explanation all over youtube and it all pretty much was garbage. Thank you for actually explaining things ffs :)
@SpookyRumi3 жыл бұрын
Amazing! You saved me so much time with this
@simonliu22688 жыл бұрын
Amazing thank you very much, I didn't understand my professors abbreviation of this, but you did a very VERY good job.
@KoksMOks3 жыл бұрын
that alg is amazing AF
@sebastianrauch27584 жыл бұрын
Thanks for the good explanation. Realy helped a lot. :D
@larsmees49524 жыл бұрын
Wouldn't it be faster to first perform a modular division using the same value (50) on the exponent? 2^(200 mod 50) = 2^0 = 1 Or is this just a coincidence?
@yaggikjalan3 жыл бұрын
This helped me so much for rsa algorithm questions! Thanks a million ☺
@monowar67236 жыл бұрын
Thanks a lot ! i will remember this video for the rest of my life.
@Chriib7 жыл бұрын
Cool trick. I will use this trick on my exam today.
@directx8724 жыл бұрын
This is so fucking awesome. I now have *the power to compute*
@swordclash66186 жыл бұрын
The explanation is A+ but the screen flickering almost made me go nuts.
@cameronsaunders90209 ай бұрын
The flicking is really bothering my eyes lol
@hardinrami85009 ай бұрын
Thank you for the explanation! It took me a while to get it though.
@priyankmungra293 жыл бұрын
nice explanation. Thank you for your efforts.
@ayaanpuri56975 жыл бұрын
lots of really large exponents' modulos are equal to 1 by fermat's little theorem
@vineet10348 жыл бұрын
what happen if base is 132 or bigger
@KhandkarAsifHossain5 жыл бұрын
Awesome video. But I am having trouble finding the mod with high base number such as 26^37 mod 77 can u help with that. 26^8 seems to pose a problem.
@shinwoo_park5 жыл бұрын
it helps me a lot! thank you sir. What a nice lecture
@mohammadahmedragab8372 жыл бұрын
great explanation. please, in the last part of the video, Why 3751 mode 50? Should 3751 the answer of 3^200 mode 50 ? I need to understand this more
@jonty35514 жыл бұрын
Great explanation man..... appreciate it🤝👍
@victorakinyemi26929 жыл бұрын
To calculate 2^300 mod 50. easy approach to solve this question is to Fermat thereom: a^ phi(n) = 1 mod n with gcd(a,n)= 1 so since gcd(2,50) = 1 then i calculate phi(50)= (2-1)*(5^2-5) =20 so 2^20 =1 mod 50 if i multiply this modular expression 15 times then i have 2^300 = 1 mod 50
@killator34218 жыл бұрын
One question how can 2 multiplied several times with 2 be an odd number when the mod is 50?
@johnchang82796 жыл бұрын
This explanation is a little confused. First, the problem is 3^200, not 2^300. But if you want to find 2^300 (mod 50), gcd(2,50)=2, so you can't use Euler directly. Instead you have to factor the modulus into the powers of its primes: x ≡ 2^300 (mod 25) and x ≡ 2^300 (mod 2). Then apply Euler to the first congruence: x ≡ 1 (mod 25). The second congruence is x ≡ 0 (mod 2). The solution is x ≡ 26 (mod 50).
@kriswalsh10203 жыл бұрын
On the step where you do 200+128+64+8 how'd you get the 64 and 8. I have a question similar but it's 221.
@AlexandrBorschchev4 жыл бұрын
Im grade 9 learning this for a math contest. It looks crazy useful and really really cool, i want to know how to master this. Thank you for the video.
@AlexandrBorschchev2 жыл бұрын
haha, cool story buddy.
@harley3514 Жыл бұрын
Thank you, other videos on this were not making sense for me, but this did
@robertniyazoff259112 күн бұрын
Why did you convert 200 to binary? Is it necessary to do? You didn't use it in the problem to help you
@tonychen10838 жыл бұрын
Thank you for your excellent explanation!
@navyakakarlapudi61266 жыл бұрын
Nice explanation sir.Thank u so much......
@stea278 жыл бұрын
Very informative, easy to understand it in your demonstration. Thank you!
@stanger89925 жыл бұрын
Ok that is kinda obvious but i have an exam soon where i will have to calculate 30 of such numbers without using calculator, and it has to take max 10 min because it's one of 18 excersises on that exam. How do i go about solving for example 33^350 mod 7 in 20 seconds, using only pen and paper?
@sindisiwemncube46654 жыл бұрын
How did you get that binary number? 11001000?
@Th1sUsernameIsNotTaken4 жыл бұрын
Thank you for this! other video's I've seen just completely skip steps or don't explain. Can't get a meeting with my teacher for a few days (online learning) and the book didn't explain any of the random jumping it was doing (didn't do steps, just jumped to the "solved" part). Now I can actually practice lol.
@memento_mori60195 жыл бұрын
Excellent breakdown. Thank you.
@owaisali9955 жыл бұрын
really thankfull for this video.. great explanantion...
@吳振瑋-y4l6 жыл бұрын
That was an awesome explanation. Solved my problem~.
@mdmuktadirmazumder2844 жыл бұрын
love you 3000mod3000
@skurt21 Жыл бұрын
I found a problem, and since nobody mentioned it in 9 year, it's probably on my side. I follow the remainders or moduli (?sorry) for powers up to 32. But according to my calculations 5 to the power of 64 mod 50 is 20 and not 31 as you mention. Am I really wrong? I calculated it in powershell
@skurt21 Жыл бұрын
yep, I'm the problem, sorry. I have no idea what I did wrong, but I'm getting the same numbers as you do now. Sorry (y)
@shailendrakumar31305 жыл бұрын
Thanks man, searching for this information from mornimg
@tinkerbajwa2 жыл бұрын
wow I understood it right away! Thankyou so much...
@ScotMatson9 жыл бұрын
This video is so thorough and one of the better ones I have come across but that screen flicker practically ruins it for me, it is really dizzying by the end. Such a shame! Thanks for taking the time to put this together otherwise, my book cannot nearly present this concept in such a clean fashion as you have here.
@aries36902 жыл бұрын
Thank you so much for your clear explanation!
@ianchen19624 жыл бұрын
dang that's so cool. Learned a lot from this
@Sahandkeshavarz7 жыл бұрын
how would i do that if my exponent is greater than 255 then i wont be able to convert to binary
@figurativelyrazzmatazz76565 жыл бұрын
I don't understan why you replaced the 3^8 with 31, why are they the same?
@anhminhtran34385 жыл бұрын
Very well explained. Thank you
@masutthe_gooner33562 жыл бұрын
What if the power is too long what then?
@wideputin65864 жыл бұрын
What if the power is a big prime number
@kelvinella6 жыл бұрын
this can be done in one line... Since (3, 50) = 1, and phi(50) = 50*1/2*4/5 = 20, then by Euler's thm, 3^200 = 1 mod 50
@JoseSanchez-vv1zd7 жыл бұрын
Great job! Thanks for the clear explanation! :)
@DanielVazquez5 жыл бұрын
Is there a shorter way? I mean, I just had a test and I was expected to solve 2^75 (mod 73) in one minute or so.
@tanishqraina36565 жыл бұрын
Well go ahead and use binomial theorem
@stephaniagambaroff8205 жыл бұрын
excellent explanation! Thank you.
@MotorHeadTech8 жыл бұрын
I don't get the 31 and 11 parts I get everything else tho please help
@zanonymousruiz96974 жыл бұрын
This saved my entire ass- Thanks!
@MichelleVo9 жыл бұрын
How did you figure out the binary for 200 from scratch?
@beasty4510 жыл бұрын
One Question. In the Modular exponentiation video, what if the exponent was an odd number such as 201 instead of 200. Is the procedure of solving the problem the same?
@Jambo6011659 жыл бұрын
It would be, you would just have to do the calculation for 3^1 mod 50 = 3 mod 50. Then at the end when you are multiplying your exponents you would add 3^1 to the calculation, so 3^128 x 3^64 x 3^8 x 3^1 = (11)(31)(11)(3) = 11253 mod 50 = 3
@ouraghyoussef56129 жыл бұрын
+Jamie Watkinson 128+64+8+1=201!! ???
@AkshayAradhya9 жыл бұрын
Would have liked the video if it wasnt for the flickering. Please use a better screen cast cause you teach really well and that shouldnt be spoiled by some flickering screen.
@rafsanjanimuhammod3098 жыл бұрын
Really Nice One, Sir !!!
@meysamamini94734 жыл бұрын
Was very vary useful Thanks a Lot !
@SitWithItBob2 жыл бұрын
This helped a lot, thanks!
@ai_robozen4 жыл бұрын
Beautiful.
@KayOScode3 жыл бұрын
You still end up needing a big integer-like library when it comes to RSA because your working with bases and powers hundreds or thousands of bits long
@jeffryyapin13999 жыл бұрын
One Question How about if the exponent was smaller then 128. for example 120 did we need to know the 128bit??
@sgut19479 жыл бұрын
+Jeffry Yapin No, you don't need the 128, because 120 = 64+32+16+8 (binary 1111000). In general, you only need up to the power of two that's less than the required exponent.
@EasiestTutor Жыл бұрын
thank you rhabk you i was struggling this was best and easiest
@EndietheEnderman9 ай бұрын
Helped heaps! Thanks
@subizsunuwar70686 жыл бұрын
thanks sir ....it's help me, while calculating encryption of msg.
@jeanantazo77466 жыл бұрын
what happen in 3751?
@ninjanothing83434 жыл бұрын
Thank you very much! Very helpful
@Just_an_alien15 жыл бұрын
Helped me a lot thank you
@zaferkhourdaji19586 жыл бұрын
Best Explanation
@manny1tm8 жыл бұрын
What if the exponent is a prime? 417^103 mod 779.
@jesuschristsonofgod97098 жыл бұрын
+Manuel Martin Try Fermat's Little Theorem
@anujaghosh1798 жыл бұрын
can you show it here using fermat's?
@eodkybb8 жыл бұрын
hei
@johnchang82796 жыл бұрын
Factor the modulus 779 = 19*41, use modularity to reduce it to 417^103 ≡ (-1)^103 ≡ -1(mod 19) and Fermat's little theorem on 417^103 ≡ 417^23 ≡ 7^23 ≡ 7*49^11 ≡ 7*8^11 ≡ 7*2^33 ≡ 7* 2^(10*3) * 8 ≡ -56 (mod 41). Then solve the simultaneous congruences: -56+41k ≡ -1(mod 19). 41 ≡ 3 (mod 19) and 55 ≡ -2 (mod 19), so this reduces to 3k ≡ -2 (mod 19). 3k ≡ -2+2*19 ≡ 36 (mod 19). Dividing by 3 gives k≡12 (mod 19), so x≡ -56+41*12 ≡ 436 (mod 779). By contrast, exponentiation by repeated squaring would be far more laborious, suitable for a computer but quite tedious for a human. On the other hand, repeated squaring is the method to use if the modulus is a large prime, larger than the exponent. Euler's theorem makes the stated problem x≡ 3^200 (mod 50) almost trivial. It says 3^20 ≡ 1 (mod 50), because the totient of 50= 50(1-1/2)(1-1/5)=20 and gcd(3,50)=1.
@dialamark78634 жыл бұрын
I loved it. Thank you
@nikhilchoudhary2775 жыл бұрын
WOOOOOWWWWW! What an Explainantion
@pc5574 жыл бұрын
You should put a photo-epilepsy warning on this video!
@abaleg22722 жыл бұрын
it took this guy 11 minutes to do something i did in 30 seconds. 3^5=43=-7(mod 50), and squaring both sides we get 3^10= 49=-1(mod 50). taking the 20th power on both sides, we get (3^10)^20=(-1)^20(mod 50) Thus, 3^200= 1(mod 50) And i'm in grade 9 learning this for the IMO
@INAYATULLAHSHEIKH6 жыл бұрын
Shortcut: 3^200 is cong to 7^40 is cong to 1 (mod 50).So remainder =1.