Vector Search: The Future of Data Querying Explained | Semantic Searching

  Рет қаралды 40,214

MongoDB

MongoDB

Күн бұрын

Пікірлер: 41
@MongoDB
@MongoDB Жыл бұрын
✅ Sign-up for a free cluster at → mdb.link/free-1ZIYVNvRVsY ✅ Vector Search Documentation→ mdb.link/vector-search-1ZIYVNvRVsY
@mzf11125
@mzf11125 Жыл бұрын
Linear Algebra wasn't a waste of time after all
@aminemaghous
@aminemaghous 6 ай бұрын
and Statistics!
@HungryWork-q4z
@HungryWork-q4z Жыл бұрын
Two Questions: 1. I use embedding model from Huggingface, and calculate embeddings myself. Can that be done inside the function that you showed? This requires importing some libs. 2. Are there other supported vector indexing algorithms? KNN has major issues with performance, I use HNSW (Hierarchical Small World Graph).
@istein654
@istein654 11 ай бұрын
Hey there, great content! I code using Pythong but this video provided me direction. Btw, I think there was an up date in the interface of MongoDB and the code for creating a vector search might need to be updated.
@spectralvalkyrie
@spectralvalkyrie Жыл бұрын
Wow I really want to learn to do this!
@maverick-n6x
@maverick-n6x Жыл бұрын
cool. i will try it
@CyncSecure-o2y
@CyncSecure-o2y Жыл бұрын
What about searching in multiple fields inside a document? Is it possible to embed and search not only the plot of the movie but 20 more properties?
@jainsamyak970
@jainsamyak970 11 ай бұрын
Hello! Did you find the answer to this ? Because I am also looking for this only. But not able to find anything.
@harikrishnansathyan4382
@harikrishnansathyan4382 10 ай бұрын
Hii.. Any update on this, did you find any way to do this?
@bobuputheeckal2693
@bobuputheeckal2693 10 ай бұрын
Did u guys think of vectorizing all the properties of the document?
@LêQuốcVương-c3y
@LêQuốcVương-c3y 10 ай бұрын
Love you so much
@PhilippeBazinet
@PhilippeBazinet 11 ай бұрын
I am really interested in implementing this in my microservices all written with Go. Can all of this be made programmatically with Mongo client for Go? Indexes can be created with the client, so I imagine that all of this can be done too.
@emanuelsosa5923
@emanuelsosa5923 Жыл бұрын
I love that!
@Wooster23
@Wooster23 Жыл бұрын
Is there a score or some quantified notion of similarity that can be returned with each result?
@adityabhaskara581
@adityabhaskara581 Ай бұрын
You can, the relevance score is 1/1+distance. So higher the relevance score, the better is.
@donalshijan5615
@donalshijan5615 11 ай бұрын
I have a question, In this example it's going through plot which was saved as movie data. right? It then queries that plot for similar result, could it be done in a way where it goes through the actual movie and tries to figure out , oh there it is, a boy and a yellow dog, and then return that movie suggesting it might be the one we are referring to.
@hoangng16
@hoangng16 8 ай бұрын
Can we create a new vector search index using code instead of going to the MongoDB UI?
@bobuputheeckal2693
@bobuputheeckal2693 10 ай бұрын
This worked for me. But some searches didn’t work as expected. I asked which is the first Bond movie. It gave me a list of bond movies. I understand the vector is only on plot. But can we vectorize the whole document ?
@Konstantin19877
@Konstantin19877 11 ай бұрын
The search output is an exact text from DB or model twicks it the way it wants? Do i understand correct, model is just a search mechanism it does not changes found data it gives it to you as is?
@ViciOuSKiddo
@ViciOuSKiddo 11 ай бұрын
Correct. It's a search mechanism, but it's a "semantic" search engine. The results it returns are exactly what you saved. If you want the models to change it, you have to send it to an LLM to do that and ask it nicely.
@miralirafiyev4646
@miralirafiyev4646 Жыл бұрын
Is it free to use in VPS server ( out of atlas ) where mongodb installed ?
@MongoDB
@MongoDB Жыл бұрын
This is only available through Atlas currently
@bobonaqa
@bobonaqa Жыл бұрын
So this is only working with dedicated servers and not supported with the serverless option?
@minhkhaitran1447
@minhkhaitran1447 Жыл бұрын
unfortunately, I just follow the guide from the doc, but I get this error | MongoServerError: $vectorSearch is not allowed or the syntax is incorrect, see the Atlas documentation for more information not sure why is that? anyone know? please help
@AndarManik
@AndarManik Жыл бұрын
Are you using the serverless?
@KingAtem1000
@KingAtem1000 Жыл бұрын
Thats pretty cool
@arturkre5793
@arturkre5793 6 ай бұрын
9 months pass and nothing works. My serverless cluster does not support triggers and also there is no search tab in my cluster.
@MongoDB
@MongoDB 6 ай бұрын
You are correct. Currently, serverless clusters have some limitations. If you would like to test out all features you can use a free forever M0 cluster which has these features enabled. Here is a list of the current limitations on serverless clusters: www.mongodb.com/docs/atlas/reference/serverless-instance-limitations/#unsupported-actions
@JaimeHRozo
@JaimeHRozo Жыл бұрын
It does not work on my Atlas cluster. The trigger log is showing the following error message even when uploading only one record: [ "Processing document with id: 573a1390f29313caabcd4eaf", "Failed to receive embedding. Status code: 429" ] How can it be fixed?
@stevehoward2749
@stevehoward2749 Жыл бұрын
To me, the 429 looks like you exhausted some free resource, probably with openai.
@0xVeeda
@0xVeeda Жыл бұрын
Seems you got rate limited
@Masyukun
@Masyukun 9 ай бұрын
I recommend re-running the REST call using your favorite client -- cURL, Bruno, Postman, etc. For me, it gave me more information -- I had no credit in my account.
@Masyukun
@Masyukun 9 ай бұрын
Don't set your Trigger to trigger off updates too, or you'll create an infinite loop! Also... it's responseCode, not response_code.
@rudroroy1054
@rudroroy1054 9 ай бұрын
This is just too much. I feel like I am so far behind.
OpenAI Embeddings and Vector Databases Crash Course
18:41
Adrian Twarog
Рет қаралды 520 М.
Vector Search RAG Tutorial - Combine Your Data with LLMs with Advanced Search
1:11:47
Как Ходили родители в ШКОЛУ!
0:49
Family Box
Рет қаралды 2,3 МЛН
I'VE MADE A CUTE FLYING LOLLIPOP FOR MY KID #SHORTS
0:48
A Plus School
Рет қаралды 20 МЛН
Counter-Strike 2 - Новый кс. Cтарый я
13:10
Marmok
Рет қаралды 2,8 МЛН
#behindthescenes @CrissaJackson
0:11
Happy Kelli
Рет қаралды 27 МЛН
Semantic Search Made Easy With LangChain and MongoDB
7:48
MongoDB
Рет қаралды 12 М.
Vector Search and Embeddings
34:43
Google Cloud
Рет қаралды 13 М.
RAG Explained in 7 Minutes: The Future of AI?
7:52
AIwithAustin
Рет қаралды 6 М.
How vector search and semantic ranking improve your GPT prompts
15:09
Microsoft Mechanics
Рет қаралды 22 М.
BigQuery vector search and embedding generation
10:08
Google Cloud Tech
Рет қаралды 12 М.
Vectoring Words (Word Embeddings) - Computerphile
16:56
Computerphile
Рет қаралды 300 М.
Vector Search: Powering the Next Generation of Applications
38:15
Why are vector databases so FAST?
44:59
Underfitted
Рет қаралды 20 М.
What is a Vector Database?
8:12
IBM Technology
Рет қаралды 99 М.
Как Ходили родители в ШКОЛУ!
0:49
Family Box
Рет қаралды 2,3 МЛН