Missing data mechanisms

  Рет қаралды 8,078

Mikko Rönkkö

Mikko Rönkkö

Күн бұрын

Пікірлер: 13
@DontKillAnts
@DontKillAnts 3 жыл бұрын
Great explanation. I am so surprised at poor pedagogy of the published article I'm reading talking about the differences between these mechanisms. You provided a clear explanation with a good (albeit borrowed) example. Good job.
@mronkko
@mronkko 3 жыл бұрын
Thanks. My example comes from Enders' book, which in my opinion is pretty much the only thing that you should read about missing data.
@johnspivack
@johnspivack 2 ай бұрын
Very good, very helpful. Thank you.
@mronkko
@mronkko 2 ай бұрын
You are welcome!
@DOLCEKAYEXOTICAL
@DOLCEKAYEXOTICAL 2 жыл бұрын
Thank you for such a straightforward and simple explanation
@mronkko
@mronkko 2 жыл бұрын
You're very welcome!
@mersaultjude
@mersaultjude 11 ай бұрын
Thank you!
@mronkko
@mronkko 11 ай бұрын
You're welcome!
@haraldurkarlsson1147
@haraldurkarlsson1147 Ай бұрын
Is the MNAR case with job performance a case of survivor bias?
@mronkko
@mronkko Ай бұрын
Depends on the context. If you have missing data in job performance because poor performers are fired permanently but you still somehow have data on at least some of the variables for these individuals, then yes.
@haraldurkarlsson1147
@haraldurkarlsson1147 Ай бұрын
@@mronkko As a physical scientist I find the subject fasinating but complex.
@PavelBalov
@PavelBalov 2 жыл бұрын
Hi! Could you please advice, how to use Little's MCAR test in python? It is easily implemented in R, but there is no popular package with MCAR test in python. Maybe Little's test can be manually coded as a sequence of other statistical tests?
@mronkko
@mronkko 2 жыл бұрын
I do not use Python, so I cannot help you with that specifically. However, implementing the test is generally not difficult. For example Enders (missing data book, 2010) gives the formula on page 20. You just implement that and compare that against the appropriate chi2 distribution to get a p value.
Consequences of missing data
12:54
Mikko Rönkkö
Рет қаралды 1,5 М.
Simple techniques for dealing with missing data
20:33
Mikko Rönkkö
Рет қаралды 7 М.
World’s strongest WOMAN vs regular GIRLS
00:56
A4
Рет қаралды 26 МЛН
Players vs Pitch 🤯
00:26
LE FOOT EN VIDÉO
Рет қаралды 109 МЛН
Osman Kalyoncu Sonu Üzücü Saddest Videos Dream Engine 275 #shorts
00:29
Missing Data Assumptions (MCAR, MAR, MNAR)
11:01
Stats with Mia
Рет қаралды 31 М.
Multiple imputation
10:44
Mikko Rönkkö
Рет қаралды 20 М.
Imputation Methods for Missing Data
8:05
Sundog Education with Frank Kane
Рет қаралды 21 М.
Full information maximum likelihood (FIML)
10:19
Mikko Rönkkö
Рет қаралды 12 М.
Missing Data Mechanisms
6:54
ritvikmath
Рет қаралды 26 М.
Dealing With Missing Data - Multiple Imputation
11:02
ritvikmath
Рет қаралды 47 М.
Workflow for multiple imputation analysis
8:44
Mikko Rönkkö
Рет қаралды 2,7 М.
World’s strongest WOMAN vs regular GIRLS
00:56
A4
Рет қаралды 26 МЛН