Grand-mean centering, cluster-mean centering, and cluster means

  Рет қаралды 5,940

Mikko Rönkkö

Mikko Rönkkö

Күн бұрын

Пікірлер: 14
@Nioco2
@Nioco2 2 жыл бұрын
Thank you! That helped me to understand the concept.
@mronkko
@mronkko 2 жыл бұрын
You are welcome
@mehmetkaya4330
@mehmetkaya4330 4 жыл бұрын
Thank you! Nice explanation!
@sabrinapannier-diehl7981
@sabrinapannier-diehl7981 5 жыл бұрын
Can it be that you're mixing something up at about 9:40? You're saying that Y01 is the contextual effect but on the screen it says Y10...
@summertummer2394
@summertummer2394 4 жыл бұрын
@@mronkko At 9:35 you also say that Gamma 01 is always the within effect, and I think that may be an error also. Will Gamma 10 (within effect) be the same in both equations or will it change? As in will the standardized coefficient for Gamma 10 (within effect) be the same for both equations or will it change?
@VioletSClover
@VioletSClover Жыл бұрын
THANK YOU SO MUCH
@mronkko
@mronkko Жыл бұрын
You are welcome.
@anmolpardeshi3138
@anmolpardeshi3138 2 жыл бұрын
5:28 : that (cluster centering) gives us the between effects BUT 6:22 this method eliminates between cluster effects - - contradiction?
@mronkko
@mronkko 2 жыл бұрын
At 5:28 I talk about the cluster means, not cluster mean centering.
@anmolpardeshi3138
@anmolpardeshi3138 2 жыл бұрын
@@mronkko thanks; great video :)
@work4development
@work4development 4 жыл бұрын
To have interpretable intercepts and cross level interactions, we should also center level-two variables, right? The question is the "x-bar_HOURS_j" (average working hours per individual - contextual or between effect) should also be centered around the grand mean?
@work4development
@work4development 4 жыл бұрын
In addition to centering, Gelman also recommends to divide by two standard deviations, so all effects are comparable with dummies variables. Thus, perhaps, we should grand-mean and divide by two standard deviations first, and after that, group mean, if the case. Sounds right? (ok graphs will be "wrong" and interpretation of substantive effects is harder, but if the idea is to get clearer and comparable estimates....)
@aviejaypaul6568
@aviejaypaul6568 Жыл бұрын
Dear Sir, I have a query here. Because the population average is difficult to justify, does that mean that we should not attempt to interpret the slope in case of a grand mean data set? Is there any other way to make this interpretation?
@mronkko
@mronkko Жыл бұрын
The answer really depends on the research question and data. Sometimes the PA effect is the only thing you can estimate. For example if you have just one observation for each unit (i.e no multilevel data). This is not really related to grand mean centering. I do not think grand mean centering is useful at all and personally I never grand mean center my data. We discuss this a bit in our paper on the random effects assumption. journals.sagepub.com/doi/10.1177/1094428119877457
Multilevel and mixed models, random and fixed part
6:40
Mikko Rönkkö
Рет қаралды 21 М.
УНО Реверс в Амонг Ас : игра на выбывание
0:19
Фани Хани
Рет қаралды 1,3 МЛН
How to Find Top Indicators and Strategies: Tutorial
15:57
TradingView
Рет қаралды 1,3 М.
Correlated random effects models
10:34
Mikko Rönkkö
Рет қаралды 10 М.
Why You Should Center Variables in Statistics
11:12
QuantFish
Рет қаралды 3,3 М.
Multilevel models
1:01:02
Andy Field
Рет қаралды 25 М.
Applied Longitudinal Data Analysis
30:32
O'Brien Institute for Public Health
Рет қаралды 17 М.
GLS fixed effects estimator and GLS random effects estimator
15:08
Mikko Rönkkö
Рет қаралды 9 М.
Centering & Standardizing Variables in R
15:41
David Caughlin
Рет қаралды 8 М.
Three-level multilevel modeling using SPSS 28 (March 2022)
33:15
Mike Crowson
Рет қаралды 11 М.
Hierarchical Linear Models (aka Multilevel Modeling): The Basics
17:04
Vector Psychometric Group
Рет қаралды 13 М.
УНО Реверс в Амонг Ас : игра на выбывание
0:19
Фани Хани
Рет қаралды 1,3 МЛН