Multi-modal RAG: Chat with Docs containing Images

  Рет қаралды 30,394

Prompt Engineering

Prompt Engineering

Күн бұрын

Пікірлер: 48
@engineerprompt
@engineerprompt 6 ай бұрын
If you want to learn RAG Beyond Basics, checkout this course: prompt-s-site.thinkific.com/courses/rag
@jfbaro2
@jfbaro2 4 ай бұрын
Does it cover how to minimize (or even eliminate) hallucinations, and that the result would ALWAYS consider the content added into the RAG "database"?
@rubencabrera8519
@rubencabrera8519 4 ай бұрын
This is the best AI channel out there, PERIOD. Thanks for sharing your knowledge
@aerotheory
@aerotheory 6 ай бұрын
Keep going with this approach, it is something I have been struggling with.
@waju3234
@waju3234 6 ай бұрын
Me too. For my case, the answer is normally hidden behind the data, context and the images.
@ilaydelrey3122
@ilaydelrey3122 6 ай бұрын
a nice open source and self hosted version would be great
@AI-Teamone
@AI-Teamone 6 ай бұрын
Such an insightful information, Eagerly waiting for more multimodel approches.
@tasfiulhedayet
@tasfiulhedayet 6 ай бұрын
We need more videos on this topic
@Techn0man1ac
@Techn0man1ac 6 ай бұрын
What about make same, but using LLAMA3 or less local LLM?
@b.lem.2499
@b.lem.2499 3 ай бұрын
Thanks, is there a video of the same project, but with langchain instead of llama index?
@ScottzPlaylists
@ScottzPlaylists 5 ай бұрын
Need to do it all in open source. No API Keys.
@BarryMarkGee
@BarryMarkGee 5 ай бұрын
Out of interest what is the application called that you used to illustrate the flows? (2:53 in the video) thanks.
@engineerprompt
@engineerprompt 5 ай бұрын
I am using mermaid code for this.
@BarryMarkGee
@BarryMarkGee 5 ай бұрын
@@engineerprompt thanks. Great video btw 👍🏻
@legendchdou9578
@legendchdou9578 6 ай бұрын
Very nice video but if you can do it with open source embedding model it would be very cool. thank you for the video
@AyishaAshraf-s2f
@AyishaAshraf-s2f 3 ай бұрын
Use case is to extract the relevant text information along with images available in the file using generative ai, When any prompt is given then relevant text information and image should display as response.
@ai-touch9
@ai-touch9 6 ай бұрын
I appreciate your effort. Pl create one to fine tune the model for efficient retrieval if possible, with lang chain.
@ArdeniusYT
@ArdeniusYT 6 ай бұрын
Hi your videos are very helpful thank you
@engineerprompt
@engineerprompt 6 ай бұрын
Glad you like them!
@vinayakaholla
@vinayakaholla 6 ай бұрын
Can you pls dive deeper into why qdrant was used and other vector dbs limitations to store both text and image embeddings, thx
@engineerprompt
@engineerprompt 6 ай бұрын
will see if I can create a video on it.
@RolandoLopezNieto
@RolandoLopezNieto 6 ай бұрын
Lots of good info, thanks
@avinashnair5064
@avinashnair5064 4 ай бұрын
can you make it using comeplete open source models?
@Makkar-b3v
@Makkar-b3v Ай бұрын
Great stuff.
@RedCloudServices
@RedCloudServices 5 ай бұрын
do you think all of this is now replaced with Gemini ?
@BACA01
@BACA01 6 ай бұрын
Thanks your videos are very helpful. I have several Gigs of pdf ebooks that i would like to process with RAG. What do you think what approach would be the best, this or a graphrag. In my case i'm looking only for local models as the costs would be very high. What if to convert all pdf pages into images first and then process them with local model like phi 3 vision and then process it with Graphrag, would it work out?
@mohsenghafari7652
@mohsenghafari7652 6 ай бұрын
it's great job! Thanks
@engineerprompt
@engineerprompt 6 ай бұрын
thanks :)
@codelucky
@codelucky 6 ай бұрын
Is it better than GraphRAG? How does the output quality compare to it?
@engineerprompt
@engineerprompt 6 ай бұрын
You could potentially create a graphRAG on top of it.
@JNET_Reloaded
@JNET_Reloaded 6 ай бұрын
wheres the code used?
@ignaciopincheira23
@ignaciopincheira23 6 ай бұрын
It is essential to conduct a thorough preprocessing of the documents before entering them into the RAG. This involves extracting the text, tables, and images, and processing the latter through a vision module. Additionally, it is crucial to maintain content coherence by ensuring that references to tables and images are correctly preserved in the text. Only after this processing should the documents be entered into a LLM.
@engineerprompt
@engineerprompt 6 ай бұрын
agree!
@jtjames79
@jtjames79 6 ай бұрын
That's a lot of work. Can an AI do this?
@engineerprompt
@engineerprompt 6 ай бұрын
@@jtjames79 Yup :)
@erdi749
@erdi749 Ай бұрын
I think that is the major point of ColPali. Regardless of its content, each PDF page is an taken as an image. Thus, there is no need for OCR, Layout etc. For sure, it has some limitations(i.e for complex queries, multiple pages will be retrieved with high scores, this may quickly overwhelm the context window of downstream generation task ) but based on my experience, ColPali based RAG(pick a vison LM say Qwen-vl) works great.
@amanharis1845
@amanharis1845 6 ай бұрын
Can we do this method using Langchain ?
@engineerprompt
@engineerprompt 6 ай бұрын
Yes, will be creating a video on it.
@cristiantironi296
@cristiantironi296 2 ай бұрын
What if the user query contain text + image?
@engineerprompt
@engineerprompt 2 ай бұрын
You can you a VLM to generate description of the images and send that as part of the text query
@cristiantironi296
@cristiantironi296 2 ай бұрын
@@engineerprompt yeah as i was expected, but what if i pass an image that VLM doesn't understand, for example personal image not available online, i should first fine tune the VLM on my images then do what u said right?
@garfield584
@garfield584 6 ай бұрын
Thanks
@RickySupriyadi
@RickySupriyadi 6 ай бұрын
I except image generation will be have another kind of breed... image gen based on image understanding based on facts
@redbaron3555
@redbaron3555 6 ай бұрын
This approach is not good enough to add value. The pictures and text needs to be referenced and linked in both vector stores to create better similarities.
@engineerprompt
@engineerprompt 6 ай бұрын
watch my latest video :)
@arifmp3284
@arifmp3284 5 ай бұрын
U have any work?
@Know_Ur_World
@Know_Ur_World 5 ай бұрын
Which video ​@@engineerprompt
Multimodal RAG: A Beginner-friendly Guide (with Python Code)
27:43
Shaw Talebi
Рет қаралды 4,1 М.
Learn LangChain.js - Build LLM apps with JavaScript and OpenAI
1:39:27
freeCodeCamp.org
Рет қаралды 95 М.
БАБУШКА ШАРИТ #shorts
0:16
Паша Осадчий
Рет қаралды 4,1 МЛН
Jaidarman TOP / Жоғары лига-2023 / Жекпе-жек 1-ТУР / 1-топ
1:30:54
Multi-Modal RAG: Chat with Text and Images in Documents
15:45
Prompt Engineering
Рет қаралды 14 М.
Graph RAG: Improving RAG with Knowledge Graphs
15:58
Prompt Engineering
Рет қаралды 86 М.
The Best RAG Technique Yet? Anthropic’s Contextual Retrieval Explained!
16:14
Multimodal RAG: Chat with PDFs (Images & Tables) [latest version]
1:11:04
Alejandro AO - Software & Ai
Рет қаралды 35 М.
Anthropic’s Blueprint for Building Lean, Powerful AI Agents
28:25
Prompt Engineering
Рет қаралды 34 М.
Gemini Multimodal RAG Applications with LangChain
59:36
Google Cloud Events
Рет қаралды 16 М.
Stop Losing Context! How Late Chunking Can Enhance Your Retrieval Systems
16:49
LightRAG: A More Efficient Solution than GraphRAG for RAG Systems?
19:49
Prompt Engineering
Рет қаралды 46 М.
Python RAG Tutorial (with Local LLMs): AI For Your PDFs
21:33
pixegami
Рет қаралды 351 М.
Agentic RAG: Make Chatting with Docs Smarter
16:11
Prompt Engineering
Рет қаралды 21 М.
БАБУШКА ШАРИТ #shorts
0:16
Паша Осадчий
Рет қаралды 4,1 МЛН