Thank you very much! This is really what many young researchers looking for. Keep going, Dr; outstanding work.
@amanuelbiyazin12 жыл бұрын
I must say you did something important! Thank you!
@henokgetachew43442 жыл бұрын
Thank you so much. Really appreciate your video. Clear and well explained.
@shibeshiabebaw54262 жыл бұрын
It is Short and clear. Thankyou!!!
@tihunemeskrem58022 жыл бұрын
Thank you so much for sharing this helpful knowledge.
@betlhemmekonen13702 жыл бұрын
Thank you, Dr God bless you! Very much appreciated!!!! 🙏🙏
@TilahunHailu Жыл бұрын
Excellent. Thank You. Next
@abdulkadirshafi519 Жыл бұрын
Thank you really brief explanation & lecturing Thank you........
@meskeluaselet86016 ай бұрын
thank you for your attractive and clear lecture
@BARNABASBekele-yl7jt Жыл бұрын
Thank you! You solve my problem of multiple regression on spss
@gemetube7713 Жыл бұрын
Thank you very much I was confused and your presentation helped me to understand well. Keep up the good work.
@tamratasaye55382 жыл бұрын
Thank you so much. Really appreciate your presentation & knowledge sharing
@redietabraham2114 Жыл бұрын
Thank you very much ,stay blessed qenu mulu alegeba bilogna neber 💚💛💙
@farzanazinnat4683 Жыл бұрын
You saved my thesis
@ashagrealito8653 Жыл бұрын
thank you🙏🙏🙏
@eskedarsetegn9897 Жыл бұрын
Thank you very much .
@habteabghebrehiwot25922 жыл бұрын
Great! please make more videos...many can learn
@AbdissaNegash6 ай бұрын
thank dr.
@zewdietura3515 Жыл бұрын
Thank you brother for a video lecturing. I've one question of clarity if sign. (p>_0.05) how could I interpret the final report? I'm a bit confused in that case!
@kurazconsulting Жыл бұрын
When the p-value associated with a coefficient in a multiple linear regression is greater than or equal to 0.05, it suggests that the corresponding predictor variable is not statistically significant in predicting the response variable. In other words, there is a higher likelihood that any observed relationship between this predictor and the response could have occurred due to random chance. Therefore, you might consider removing this predictor from the model if your goal is to create a more parsimonious and interpretable model. However, it's important to also consider the practical significance of the predictor and its role in the overall context of your analysis before deciding to exclude it.
@na7hanw Жыл бұрын
Thank You.
@NS-ih3jp Жыл бұрын
Thank you
@hiwotabebe9072 жыл бұрын
Thank You very mcuh
@lemlemlemlem10842 жыл бұрын
Thank you a lot brother
@kasfika2 жыл бұрын
It's good and i am learning alot. Could you do on SEM, Multilevel analysis???
@ZerihunWelde-gt9hi Жыл бұрын
thank you Dr. my question is that how to calculate sample size for poisson regression. please help me