Multivariable Calculus | The tangent plane of a level surface.

  Рет қаралды 10,862

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 18
@Al.2
@Al.2 Жыл бұрын
This video seems to be put too early in the playlist. Chain rule as of 2:40 not proved yet, gradient not defined.
@fredrickelvis7883
@fredrickelvis7883 3 жыл бұрын
Great explanation. Love from Canada
@declanwk1
@declanwk1 2 жыл бұрын
so clear, thank you
@riemann4151
@riemann4151 2 жыл бұрын
These series is really good. Can you recommend textbooks on multivariable calculus in IR^n
@alijoueizadeh2896
@alijoueizadeh2896 11 ай бұрын
Thank you. Greetings from Iran.
@nailabenali7488
@nailabenali7488 4 жыл бұрын
Hey! There is on my course a notion called tangent vectors over a subset!! It's really different from this, do you have any idea on it?
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
I am not really sure about this - I would have to see how it is precisely defined.
@nailabenali7488
@nailabenali7488 4 жыл бұрын
@@MichaelPennMath This is the definition I have: Let X be a subspace of a space E ( E can be a normed one) an element v from E is said to be a tangent vector to X in x if there existe epsilon strictly big than 0 and a parametric arc (gamma) defined from the open interval (-epsilon,+epsilon) to X differentiable in 0 such that gamma(0)=x and the derivative of gamma in 0 equal v. I did my best in the translation..
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
It still feels like this is a tangent vector at a point x\in X. If I am understanding: E is some "large" ambient space (like R^n or C^n) and X is a subset (probably like a smooth manifold), then v\in E is tangent to X at x if (your definition). One thing that you can do is put all of these vectors together into a tangent space -- the tangent space of X at x, sometimes denote T_x(X). This is an important concept in Lie theory -- the Lie algebra of a Lie group is the tangent space at the identity.
@nailabenali7488
@nailabenali7488 4 жыл бұрын
@@MichaelPennMath for example if I wanted to find all the tangent vector to [-1,1]^2 at (0.0) should I look for a tangent space? ( I'm still learning this concept so I'm not very comfortable with)
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
@@nailabenali7488 From your definition, any curve in R^2 is tangent to this space at (0,0). You can take your curve to be a line through the origin in the direction of whatever vector you want. I think this may be an example of something that is very simple, but not realistic so it makes it tricky.
@PianoMysteries
@PianoMysteries 3 жыл бұрын
so you ignore the k?
@manuel3494
@manuel3494 3 жыл бұрын
Great vid
@mathCS1233
@mathCS1233 2 жыл бұрын
awesome bro thanks!!
@uea4066
@uea4066 3 жыл бұрын
how and why did you scale = , thanks by the way, great videos
@fuvet
@fuvet 3 жыл бұрын
I presume because he said the magnitude doesn't matter and since the x and z were equal to each other and the y would always be 0, he just set it to 1,0,1 for simplicity
@aristo7051
@aristo7051 2 жыл бұрын
I wish you were my multivariable calc. lecturer
Multivariable Calculus | The directional derivative.
8:54
Michael Penn
Рет қаралды 3,3 М.
Multivariable Calculus | The tangent plane
8:21
Michael Penn
Рет қаралды 4,4 М.
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
a very tricky Diophantine equation
23:43
Michael Penn
Рет қаралды 2,2 М.
22 - Level surfaces
11:30
הטכניון - מכון טכנולוגי לישראל
Рет қаралды 39 М.
Tangent Planes in Multivariable Calculus
13:06
Dr. Bevin Maultsby
Рет қаралды 2,9 М.
ALL of calculus 3 in 8 minutes.
8:10
gregorian calendar
Рет қаралды 1,2 МЛН
infinitely many primes -- the topology way!
16:16
Michael Penn
Рет қаралды 9 М.
Computing a tangent plane
9:41
Khan Academy
Рет қаралды 110 М.
Tangent Planes and Normal Lines - Calculus 3
12:46
The Math Sorcerer
Рет қаралды 37 М.