Proof that the Totient Function is Multiplicative

  Рет қаралды 15,006

Mu Prime Math

Mu Prime Math

Күн бұрын

Пікірлер: 26
@paul21353
@paul21353 3 жыл бұрын
Your proof has the great quality of not only proving the multiplicativity of phi, after seeing this proof you totally understand why this property is the way it is. Nobody who saw this proof will ever forget it. Chapeau!!👍
@alokkumarthakur4141
@alokkumarthakur4141 9 ай бұрын
I would like to add a summary to the proof provided in the video for easier understanding : Define A = set of numbers coprime to ab and lying between 1 and ab. Define B = cross product of phi(a) and phi(b). (Only here, I am abusing the notation of phi(n) to denote the set of numbers coprime to n and lying in {1,2,3,...,n}.) Now, consider the function f : A --> B, defined by f(x) = (x mod a, x mod b). 1) f(x) is shown to be an into function 2) every element of B is shown to have atleast one preimage in A by chinese remainder theroem, implying f is surjective. 3) every element of B is shown to have a unique preimage in A by chinese remainder theroem. Now, no two elements in the codomain can have the same preimage because then f(x) would not remain a valid function. But we know that f(x) is a valid function because it maps each input of A to exaclty one output in B. Hence f is injective also. Hence, f is shown to be a bijection. Hence phi(ab) = phi(a) * phi(b) if gcd(a,b) = 1.
@marcc1179
@marcc1179 15 күн бұрын
better than my professor and chatgpt. Thank you very much!
@slavinojunepri7648
@slavinojunepri7648 16 күн бұрын
Cristal clear explaination
@mr.entropic7356
@mr.entropic7356 3 жыл бұрын
Awesome video man. You explain very well.
@jamesflagg6695
@jamesflagg6695 6 ай бұрын
wow you've saved me - thanks so much for making such a clear, thorough proof! 😅
@alejandrosalazarmejia2801
@alejandrosalazarmejia2801 Жыл бұрын
Absolutely excellent explanation!
@eamon_concannon
@eamon_concannon 2 жыл бұрын
Brilliantly explained. Thanks a lot.
@khalilbsfic
@khalilbsfic 6 ай бұрын
So simple..Thanks u very much.. The way u proved the bijection was very cool....God bless..
@NikooLabbafimazraehshahi
@NikooLabbafimazraehshahi 7 ай бұрын
That was Awesome , thanks
@turabzaidi9651
@turabzaidi9651 3 жыл бұрын
Man!!You are great. Thanks for the video❤️❤️
@matti1610
@matti1610 3 жыл бұрын
Great video, you are really likeable to me, therefore it makes double fun to watch your videos!
@weisanpang7173
@weisanpang7173 9 ай бұрын
Hi @Mu Prime Math, please consider doing a series on Number Theory. There are not many such content in youtube, and most if not all of them poorly explain.
@skonark18
@skonark18 3 жыл бұрын
Sir I am from India.Your explanation explicitly described how the system of congruences work and proof of euler totient function.Can I apply for any USMO from India???
@sabyasachi36
@sabyasachi36 2 жыл бұрын
Amazing proof
@tsunningwah3471
@tsunningwah3471 8 ай бұрын
you are my hero
@ronelalday2472
@ronelalday2472 4 жыл бұрын
Wow. This is brilliant.
@yanlashchev8721
@yanlashchev8721 3 жыл бұрын
I am wondering why you were allowed to just state the constraints gcd(k,a) = 1 , gcd(k,b)= 1. I have been trying to make this video into a structural proof but I am stuck on the reasoning behind why we can create such a restraint. I understand it was for the sake of having those elements belong in the set but is that allowed?
@MuPrimeMath
@MuPrimeMath 3 жыл бұрын
The point of that part of the proof is to show that f is a bijection. That means that for every element in the codomain, there is exactly one element in the domain that maps to it. But every element of the codomain is a pair (k,n) with gcd(k,a)=1 and gcd(n,b)=1. That is true by definition when we look at φ(a) and φ(b). Therefore we just want to consider values k,n with those properties!
@debalghosh5412
@debalghosh5412 3 жыл бұрын
My god that's a rigorous proof
@supergsx
@supergsx 3 жыл бұрын
Isn't it arguable that 1 is not co-prime to anything?? I don't understand having the 1 in there.
@MuPrimeMath
@MuPrimeMath 3 жыл бұрын
The definition of coprime is that a,b are coprime iff gcd(a,b) = 1. Clearly gcd(1,n) = 1, so by definition 1 is coprime to every positive integer.
@djvalentedochp
@djvalentedochp 4 жыл бұрын
you rock
@ojas3464
@ojas3464 3 ай бұрын
👍
@NikooLabbafimazraehshahi
@NikooLabbafimazraehshahi 7 ай бұрын
That was Awesome , thanks
@NikooLabbafimazraehshahi
@NikooLabbafimazraehshahi 7 ай бұрын
That was Awesome , thanks
Explicit Formula for Euler's Totient Function!
7:05
Mu Prime Math
Рет қаралды 5 М.
23% Beyond the Riemann Hypothesis - Numberphile
20:28
Numberphile
Рет қаралды 410 М.
Happy birthday to you by Secret Vlog
00:12
Secret Vlog
Рет қаралды 6 МЛН
PRANK😂 rate Mark’s kick 1-10 🤕
00:14
Diana Belitskay
Рет қаралды 7 МЛН
Smart Sigma Kid #funny #sigma
00:14
CRAZY GREAPA
Рет қаралды 109 МЛН
Chinese Remainder Theorem and Cards - Numberphile
11:13
Numberphile
Рет қаралды 333 М.
Introduction to number theory lecture 14. Euler's totient function
48:51
Richard E Borcherds
Рет қаралды 8 М.
Number Theory | The Multiplicativity of Euler's Totient Function
13:18
The Oldest Unsolved Problem in Math
31:33
Veritasium
Рет қаралды 11 МЛН
Let's Invent Two-Dimensional Multiplication
34:29
Wrath of Math
Рет қаралды 18 М.
Why 4d geometry makes me sad
29:42
3Blue1Brown
Рет қаралды 634 М.
Introduction to Euler's Totient Function!
6:56
Mu Prime Math
Рет қаралды 23 М.
Chinese Remainder Theorem -- Number Theory 11
26:59
Michael Penn
Рет қаралды 42 М.
Euler's Totient Function -- Number Theory 13
35:28
Michael Penn
Рет қаралды 23 М.