Mutltiple Correspondence Analysis (Part 1/4: Data - issues)

  Рет қаралды 39,184

François Husson

François Husson

Күн бұрын

Пікірлер: 25
@ellaphelps
@ellaphelps 4 жыл бұрын
Super explication, merci d’avoir pris le temps de l’enregistrer!! Très clair et utile!
@Adelphos0101
@Adelphos0101 4 жыл бұрын
Great for introduction into MCA, thank you.
@Apahom
@Apahom 7 жыл бұрын
Great video. thank you Francois!
@saumitrasinha89
@saumitrasinha89 7 жыл бұрын
This is really great! Thank you!
@MarlasMusings
@MarlasMusings 6 жыл бұрын
Thank you so much for this! Looking at some survey census data now for research.
@MP-ds7ed
@MP-ds7ed 7 жыл бұрын
Dr Husson, thank you for the depth and the quality of your analysis. Can we perform Multiple Correspondence Analysis in panel data when data is recorded in different points in time ? or it is the case that multiple correspondence analysis is applicable only to cross section data.
@alexanderyau6347
@alexanderyau6347 7 жыл бұрын
Hi, in your video 5:09, is that one-hot encoding?
@HussonFrancois
@HussonFrancois 7 жыл бұрын
That is the way to encode data when performing MCA.
@alexanderyau6347
@alexanderyau6347 7 жыл бұрын
Thank you, What if I have preprocessed the data with one-hot encoding when using MCA? Do any methods that support PCA mixed with MCA? Since in some data, there are both continuous variables and categorical variables.
@HussonFrancois
@HussonFrancois 7 жыл бұрын
You can use the function FAMD (factor analysis for mixed data). It handles continuous and categorical variables simultaneously.
@alexanderyau6347
@alexanderyau6347 7 жыл бұрын
Thank you, I found FAMD is a function in FactoMineR package. I have processed the data with one-hot encoding.
@javierbadajozdavila8145
@javierbadajozdavila8145 4 жыл бұрын
Hi, Can MCA be used with likert scales?
@5b2y3f6
@5b2y3f6 8 жыл бұрын
非常感谢~
@kibromadinoabate4777
@kibromadinoabate4777 6 жыл бұрын
it is very informative can you help me get mca for asset index ??
@simbobcrafts4843
@simbobcrafts4843 6 жыл бұрын
I don’t understand what the letters mean for eg - j J I k etc
@HussonFrancois
@HussonFrancois 6 жыл бұрын
I is the number of individuals J the number of variables J the number of categories
@simbobcrafts4843
@simbobcrafts4843 6 жыл бұрын
François Husson thank you
@murtadaalbaraq2545
@murtadaalbaraq2545 5 жыл бұрын
Hello Sir, Thanks for this video but I need help on how I can extract data from the survey. Thanks
@macmillana.bonomali3972
@macmillana.bonomali3972 5 жыл бұрын
Hallo Mourtada, to extract data from a survey i.e questionnaires, you will need to develop a data mask either in excel or directly into the software y0u intend to use for data analysis
@guilhermeparreira5448
@guilhermeparreira5448 7 жыл бұрын
Hi There! Great video. I am wondering if the questionnaire ( 2003 INSEE Survey) itself is available online. In fact, I want to know whether the hobbie question is a multiple choice or if it is a yes/no question. Even tough I am reading the section 3.7.1.1 Designing a Questionnaire: Choice of Format of your book, I am still in doubt how to deal with multiple choice and overlapping questions in MCA. Do you have any other material or video that explain that? Thanks in advance.
@HussonFrancois
@HussonFrancois 7 жыл бұрын
A multiple choice variable is handled with as many variables as there are choices. And then, each new variable takes the values yes or no.
@turningandknives
@turningandknives 4 жыл бұрын
I find your notation very confusing. What is J, j, K, and k. What is the difference between a category and variable?
@HussonFrancois
@HussonFrancois 4 жыл бұрын
A variable is the gender and the categories are Male and Femele. j is the j-th variable and there is a total of J variables. k is the k-th category and there is a total of K categories (from all the variables)
@lollipop85
@lollipop85 6 жыл бұрын
You're adorable. Even though I don't understand much, I think it has to do more with me than you. Nonetheless, thank you for your videos :)
@simbobcrafts4843
@simbobcrafts4843 6 жыл бұрын
Impossible to understand
Correspondence Analysis (part 1/5): Introduction
17:51
François Husson
Рет қаралды 27 М.
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
Principal Component Analysis (PCA) - easy and practical explanation
10:56
Principal Component Analysis (PCA)
6:28
Visually Explained
Рет қаралды 253 М.
The One-Minute Correspondence Analysis Course
3:37
CARMEnetwork
Рет қаралды 53 М.
Multiple Correspondence Analysis with FactoMineR
15:52
François Husson
Рет қаралды 34 М.
Principal Component Analysis (PCA)
13:46
Steve Brunton
Рет қаралды 412 М.
PCA : the basics - explained super simple
22:11
TileStats
Рет қаралды 64 М.
Multiple correspondence analysis
17:21
Statistics Ninja
Рет қаралды 9 М.
Correspondence Analysis in R
13:17
Wakjira Tesfahun
Рет қаралды 8 М.