To learn more about one common way to create histograms of continuous variables, see: journals.plos.org/plosone/article?id=10.1371/journal.pone.0087357 To learn more about.... R-squared = kzbin.info/www/bejne/aHK0fKCtZpmgfq8 Entropy = kzbin.info/www/bejne/j6XIk3qMrZJ5rtk To learn more about Lightning: lightning.ai/ Support StatQuest by buying my book The StatQuest Illustrated Guide to Machine Learning or a Study Guide or Merch!!! statquest.org/statquest-store/
@SelinDrawz Жыл бұрын
Thank u daddy stat quest for carrying me through my university course
@statquest Жыл бұрын
Ha! :)
@faizalrafi Жыл бұрын
I am binge-watching this series. Very clear and concise explanations for every topics given in the most interesting way!
@statquest Жыл бұрын
Glad you like them!
@PunmasterSTP9 ай бұрын
Same here!
@mohammadeslami74625 ай бұрын
Superb!!! I recommend this channel to everyone.
@statquest5 ай бұрын
Thanks!
@filandavid37472 ай бұрын
Mesmerizing! U are a beacon of hope for us struggling engineers here in China xxx
@statquest2 ай бұрын
Thanks!
@PunmasterSTP9 ай бұрын
Mutual information, clearly explained? More like "Magnificent demonstration, you deserve more fame!" 👍
@statquest9 ай бұрын
Thanks! 😃
@ian-haggerty8 ай бұрын
Entropy === The expectation of the surprise!!! I'll never look at this concept the same again
@statquest8 ай бұрын
bam! :)
@Geneu9710 ай бұрын
Thank you for being a content creator
@statquest10 ай бұрын
Thanks!
@PunmasterSTP9 ай бұрын
Not just a creator of any content either. A creator of *exceptional* content!
@isaacfernandez2243 Жыл бұрын
Dude, you don't even know me, and I don't really know you either, but oh boyy, I fucking love you. Thank you. One day I will teach people just like you do.
@statquest Жыл бұрын
Thanks! :)
@espedaire3 ай бұрын
It would be awesome if there were links to "if you are not familiar with XYZ, check out the quest", for noobs trying figure out what we don't know. Keep up the great work!
@statquest3 ай бұрын
Those links are at the bottom of the description, but I'll also add them here: R-squared = kzbin.info/www/bejne/aHK0fKCtZpmgfq8 Entropy = kzbin.info/www/bejne/j6XIk3qMrZJ5rtk
@espedaire3 ай бұрын
❤ There's a lot of junk appended by yt to the description, I had to look hard to find it just now
@Fan-vk9gx Жыл бұрын
Super! I have been struggled between copula, mutual information, etc. for a while, that is exactly what I am looking for! Thank you, Josh! This video is really helpful!
@statquest Жыл бұрын
Glad it was helpful!
@GGWPTrader Жыл бұрын
OMG i never see this channel, how many hours would be saveeddd.. new subs here, thanks alottt for ur vids
@statquest Жыл бұрын
Welcome!
@raizen74 Жыл бұрын
Superb explanation! Your channel is great!
@statquest Жыл бұрын
Glad you think so!
@adityaagrawal2397 Жыл бұрын
Just started Learning ML, am assured now that the journey would be smooth with this channel
@statquest Жыл бұрын
Good luck! :)
@こよい-e7n7 ай бұрын
I love this video. Simple and clear.
@statquest7 ай бұрын
Thanks!
@kenmayer9334 Жыл бұрын
Awesome stuff, Josh. Thank you!
@statquest Жыл бұрын
My pleasure!
@VaibhaviDeo Жыл бұрын
you are the best god sent really stay blessed
@statquest Жыл бұрын
Thank you!
@dragoncurveenthusiast Жыл бұрын
Your explanations are awesome!
@statquest Жыл бұрын
Glad you like them!
@stepavancouver Жыл бұрын
An interesting explanation and nice sence of humor 👍
@statquest Жыл бұрын
Thank you!
@MegaNightdude Жыл бұрын
Great stuff. As always.
@statquest Жыл бұрын
Thank you very much! :)
@smilefaxxe25578 ай бұрын
Great explanation, thank you! ❤🔥
@statquest8 ай бұрын
Glad it was helpful!
@zachchairez4568 Жыл бұрын
Great job! Love it!
@zachchairez4568 Жыл бұрын
Liking my own comment to double like your video :)
@statquest Жыл бұрын
Double bam! :)
@Maciek17PL Жыл бұрын
Amazing as always!!!
@statquest Жыл бұрын
Thank you!
@felipevaldes7679 Жыл бұрын
I love this channel
@statquest Жыл бұрын
BAM! :)
@felipevaldes7679 Жыл бұрын
@@statquest lol, very on-brand too.
@arash2229 Жыл бұрын
Thank youuuu. you explain everything clearly
@statquest Жыл бұрын
Glad it was helpful!
@sasha297603ha9 ай бұрын
Love it, thanks!
@statquest9 ай бұрын
Thank you!
@Lynxdom Жыл бұрын
You got a like just for the musical numbers!
@statquest Жыл бұрын
bam!
@samjudelson4 ай бұрын
Someone hit me on the head with a club, and now I'm good at stats. That's what they call... bam bam.
@statquest3 ай бұрын
ha! :)
@AI_ML_DL_LLM11 ай бұрын
3 more things: 1- it would have been great if you could make a comparison with correlation too here, 2- discuss the minimum and maximum value of the MI, 3- the intuition of this specific formula
@statquest11 ай бұрын
Thanks! I'm not really sure you can compare Mutual Information to correlation because correlation doesn't work at all with discrete data. I mention this at 1:20.
@bernardtiongingsheng85 Жыл бұрын
Thank you so mcuh! It is really helpful. I really hope you can explain KL divergence in the next video.
@statquest Жыл бұрын
I'll keep that in mind.
@Malyosh-m6i10 ай бұрын
Two sigmas are like two for loops, such that, for every index of outer Sigma, the inner sigmaales a complete iteration.
@statquest10 ай бұрын
bam!
@pablovivas5234 Жыл бұрын
Keep it up. Great content
@statquest Жыл бұрын
Thank you!
@Ewan-t6v6 ай бұрын
you are a genius
@statquest6 ай бұрын
:)
@StackhouseBK9 күн бұрын
you are amazing
@statquest8 күн бұрын
Thank you!
@ian-haggerty8 ай бұрын
Seriously though, I think the KL divergence is worth a mention here. Mutual information appears to be the KL divergence between the actual (empirically derived) joint probability mass function, and the (empirically derived) probability mass function assuming independence. I know that's a lot of words, but my brain can't help seeing these relationships.
@statquest8 ай бұрын
One day I hope to do a video on the KL divergence.
@buckithed10 ай бұрын
Fire🔥🔥🔥
@statquest10 ай бұрын
BAM! :)
@murilopalomosebilla2999 Жыл бұрын
Excellent content as always!
@statquest Жыл бұрын
Much appreciated!
@liam_427 ай бұрын
Hello, that's a great video and it has helped me understand a lot about Mutual Information as well as your other video about entropy. I do have a question. At 11:13 the answer you get after calculation is 0.5004 and it is explained that it is close to 0.5. However when I do the math (( 4 ÷ 5 ) × log ( 5 ÷ 4 ) + ( 1 ÷ 5 ) × log( 5 ) ) the answer I get is 0.217322... Am I missing something? Because from what I understood, the closer you get to 0.5, the better it is but it is not confirmed by my other examples. Is there a maximum to mutual information? Thank you for your video.
@statquest7 ай бұрын
The problem is that you are using log base 10 instead of the natural log (log base 'e'). I talk about this at 8:07 and in this other video: kzbin.info/www/bejne/n6bNfYFqbcyoo80
@liam_427 ай бұрын
@@statquest Thank you for your answer. That explains a lot.
@rosss69897 ай бұрын
I have same doubt, when both columns are equal it says mutual info is 0.5 then what is maximum value of mutual info and in which scenario ?
@harishankarkarthik35707 ай бұрын
The calculation at 8:27 seems incorrect. I plugged it into a calculator and got 0.32. The log is base 2 right?
@statquest7 ай бұрын
At 8:07 I say that we are using log base 'e'.
@pranabsarmaiitm2487 Жыл бұрын
awesome!!! Now waiting for a video on Chi2 Test of Independence.
@statquest Жыл бұрын
I'll keep that in mind.
@marahakermi-nt7lc Жыл бұрын
thankss joshh 😍😍 in 1:30 since the response variable is not continuous and takes on 0 or 1(yes/no) can we model it with logistic regression?
@statquest Жыл бұрын
Yep!
@avnibar6 ай бұрын
Hi, thank you Josh. I have one question. Does MI score is affected by imbalanced data?
@statquest6 ай бұрын
Presumably - pretty much everything is affected by imbalanced data. This is because you have a much better estimate one class and a much worse estimate for the other.
@ruiqili18188 ай бұрын
Your explanations are alway awesome! I wonder how to explain Normalized Mutual Information?
@statquest8 ай бұрын
I believe it's just a normalized version of mutual information (so scale it to be a value between 0 and 1).
@Lara-qo5dc7 ай бұрын
This is great! Do you know if you can interpret a NMI value in percentages, something like 7% of information overlaps, or 7% of group members overlap?
@dhanrajm653710 ай бұрын
hi, what will be the base of the logarithm when calculating entropy. I believe it was mentioned in the entropy video that for 2 outputs(yes/no or heads/tails) the base of the logarithm will be two. Is there any generalization to this statement?
@statquest10 ай бұрын
Unless there is a specific reason to use a specific base for the log function, we use log base 'e'.
@666shemhamforash93 Жыл бұрын
Amazing as always! Any update on the transformer video?
@statquest Жыл бұрын
Still working on it.
@user-oq1yk2fq2f3 ай бұрын
so here does it means that we are comparing two variables, one is feature and one is output and the output is taken from test data? and basically we are tuning the model and we are using mutual information just to know which of the features are more useful to tune our model to get more accurate predictions? and after this we check our tuned model for the test set? and why do we want to reduce the attributes? do we do it because the less attributes will do the fast calculations and we can train our data in less time?
@statquest3 ай бұрын
That's the main idea. There are a lot of reasons you might want to reduce the number of variables in your model. 1) sometimes collecting data can be very expensive 2) fewer variables can mean we need less data to fit the model.
@noazamstein5795 Жыл бұрын
is there a good and stable way to calculate mutual information for numeric variables *where the binning is not good*, e.g. highly skewed distributions where the middle bins are very different from the edge bins?
@statquest Жыл бұрын
Hmm... off the top of my head, I don't know, but I wouldn't be surprised if there was someone out there publishing research papers on this topic.
@viranchivedpathak4231 Жыл бұрын
DOUBLE BAM!!
@statquest Жыл бұрын
Thanks!
@BorisNVM11 ай бұрын
this is cool
@statquest11 ай бұрын
Thanks!
@aleksandartta Жыл бұрын
1) based on what to choose the number of bins? Does larger number of bins gives lesser mutual information? 2) what if the label (output value) is numerical? Thank in advance
@statquest Жыл бұрын
1) Here's how a lot of people find the best number (and width) of the bins: journals.plos.org/plosone/article?id=10.1371/journal.pone.0087357 2) Then you make a histogram of the label data.
@eltonsantos4724 Жыл бұрын
Que Top. Dublado em português
@statquest Жыл бұрын
Muito obrigado! :)
@poLirLANCER Жыл бұрын
awesome
@statquest Жыл бұрын
Thanks!
@wowZhenek Жыл бұрын
Josh, thank you for the awesome easily digestible video. One question. Is there any specific guideline about binning the continuous variable? I'm fairly certain that depending on how you split it (how many bins you choose and how spread they are) the result might be different.
@statquest Жыл бұрын
To learn more about one common way to create histograms of continuous variables, see: journals.plos.org/plosone/article?id=10.1371/journal.pone.0087357
@wowZhenek Жыл бұрын
@@statquest Josh, thank you for the link, but I guess I formulated my question incorrectly. The question was about not creating the histogram but actually choosing the bins. You split your set in 3 bins. Why 3? Why not 4 or 5? Would the result change drastically if you split in 5 bins? What if the distribution of the variable you are splitting is not normal or uniform? Etc
@statquest Жыл бұрын
@@wowZhenek When building a histogram, choosing the bins is the hard part, and that is what that article describes - a special way to choose the number and width of bins specifically for Mutual Information. So take a look. Also, because we are using a histogram approach, it doesn't matter what the underlying distribution is. The histogram doesn't make any assumptions.
@wowZhenek Жыл бұрын
@@statquest oh, yeah, I didn't look inside the URL you gave because your described it as "one common way to create histograms of continuous variables" which seemed very much distant from what I was actually asking about. Now that I checked the link, damn, what a comprehensive abstract. Thank you very much!
@archithiwrekar4021 Жыл бұрын
Hey, so what if our dependent variable ( here, loves troll 2) is continuous? Can we use Mutual information in that case? by binning aren't we just converting it into a categorical variable?
@statquest Жыл бұрын
You could definitely try that.
@usamahussain44615 ай бұрын
this is a nice tutorial and with different useful scenarios. But I didn't completely grasp the intuition of something never changing telling nothing about something that does. I understand it mathematically but hoping for a more intuitive explanation, because even if something does not change, there are some matches between the features.
@statquest5 ай бұрын
Say like I ask a bunch people what is their favorite color is and how old they are. Some of the people are young, some are middle aged and some are old, but everyone loves the color green. Now, if I told you that someone in that group loved the color green, what would that tell you about that person's age? Nothing. Since everyone loves green (it never changes) it can't differentiate between young, middle aged and old people.
@9erik1 Жыл бұрын
6:18 not small bam, big bam... thank you very much...
@statquest Жыл бұрын
BAM!!! :)
@IshanGarg-y1u5 ай бұрын
In case of continuous variables how to decide the number of bins and the boundaries?
@statquest5 ай бұрын
It probably depends on the dataset. Usually with things like that I like to plot histograms to make decisions.
@RaviPrakash-dz9fm Жыл бұрын
Can we have videos about all the gazillion hypothesis tests available!!
@statquest Жыл бұрын
I'll keep that in mind.
@GMD023 Жыл бұрын
Off topic question...but will chatgpt replace us as data scientists/analysts/ statisticians. I just discovered it tonight and it blew me away. I basically learned html and css in a day with it. Im worried it will massively reduce jobs in our field. I did a project that would normally take all day in a few minutes...scary stuff.
@insomniacookie2315 Жыл бұрын
Well, if you really want his opinion, watch the AI Buzz #1 Josh uploaded three weeks ago. It’s in this channel. As for my opinion, obviously nobody knows yet, but it will soon be a new ground-level for anybody else. For some that all they can do is basic things ChatGPT does far better, they are in danger; for others that can make more values out of ChatGPT (or any tools to come), they are in far better shape. Which do you think you and fellow data scientists are? And even for the basic stuffs, there should be at least someone to check whether the ChatGPT has done some absurd work or not, right? Maybe at least for a few years or so.
@ayeshavlogsfun Жыл бұрын
Just out of curiosity how did you learn HTML and CSS in a day ? And what's specific task that you solved
@toom2141 Жыл бұрын
I didnt think ChatGPT is that impressive afterall. Makes so many mistakes is not able to do really complicated stuff. Totally overhyped!
@statquest Жыл бұрын
See: kzbin.info/www/bejne/oWTFaoCsqdlporc
@GMD023 Жыл бұрын
@@statquest thank you! This is great. Im also starting my first job today post college as a research data specialist! Your videos always helped me throughout my data science bachelors, so thank you!
@devenkapadia53303 ай бұрын
Can this mutual information value be greater than 0.5, I mean closer to 1??
@statquest3 ай бұрын
In theory the range of possible values goes from 0 to positive infinity.
@6nodder6 Жыл бұрын
Is it weird that my prof. gave me the mutual information equation as one that uses entropy? We were given "I(A; B) = H(B) - sum_b P(B = b) * H(A | B = b)" with no mention of the equation you showed in this video
@statquest Жыл бұрын
That is odd. Mutual information can be derived from the entropy of two variables. It is the average of how the surprise in one variable is related to the surprise in another. However, this is the standard formula. See: en.wikipedia.org/wiki/Mutual_information
@ronakbhatt48806 ай бұрын
Can't we use correlation factor instead of Mutual information for continuous variable?
@statquest6 ай бұрын
If you have continuous data, use R^squared.
@jozefinagramatikova48898 күн бұрын
So when we don't have categorical features can we just use R^2?
@statquest8 күн бұрын
Yep
@jozefinagramatikova48897 күн бұрын
@@statquest But doesn't R^2 show only linear relationship?
@statquest7 күн бұрын
@@jozefinagramatikova4889 When used with linear regression, then yes. However, R-squared can be applied to any model, even models that make non-linear fits, and in that case, it can evaluate a non-linear relationship.
@jozefinagramatikova48897 күн бұрын
@@statquest Thank you very much! So, is Mutual Information used more often compared to R^2 for feature selection (when we don't have categorical features) and why?
@statquest7 күн бұрын
@@jozefinagramatikova4889 If you don't have categorical features, I think R^2 is more popular.
@andrewdouglas9559 Жыл бұрын
It seems information gain (defined via entropy) and mutual information are the same thing?
@statquest Жыл бұрын
They are related, but not the same thing. For details, see: en.wikipedia.org/wiki/Information_gain_(decision_tree)
@andrewdouglas9559 Жыл бұрын
@@statquest Thanks, I'll check it out. And also thanks for all the videos. It's an incredible resource you've produced.
@romeo72899 Жыл бұрын
Can you please make a video on Latent Dirichlet Allocation
@statquest Жыл бұрын
I'll keep that in mind! :)
@AI_ML_DL_LLM11 ай бұрын
maybe next video on this: KL divergence
@statquest11 ай бұрын
It's on the list.
@Chuckmeister3 Жыл бұрын
What does it mean if mutual information is above 0.5? If 0.5 is perfectly shared information...
@statquest Жыл бұрын
As you can see in the video, perfectly shared information can have MI > 0.5. So 0.5 is not the maximum value.
@Chuckmeister3 Жыл бұрын
@@statquest Is MI then somehow influenced by the size of the data or the number of categories? The video seems to suggest it should be around 0.5 for perfectly shared information (at least in this example). With discrete data using 15 bins I get some values close to 1. Thanks for these great videos.
@statquest Жыл бұрын
@@Chuckmeister3 Yes, the size of the dataset matters.
@yurigansmith Жыл бұрын
@@Chuckmeister3 Interpretation from coding theory (natural log replaced by log to base 2): Mutual information I(X;Y) is the amount of bits wasted if X and Y are encoded separately instead of jointly encoded as vector (X,Y). Statement holds on average and only asymptotically, i.e. for optimal entropy coding (e.g. arithmetic encoder) with large alphabets (asymptotically for size -> oo). It's the amount of information shared by X and Y measured in bits. Mutual information can become arbitrarily large, depending on the size of the alphabets of X and Y (and the distribution p(x,y) of course). But it can't be greater than the separate entropies H(X) and H(Y), respectively the minimum of both. You can think of I(X;Y) as the intersection of H(X) and H(Y). ps: I think the case of perfectly shared information is if there's a (bijective) function connecting each symbol of X with each symbol of Y, so that the relation between X and Y becomes deterministic. In that case H(X)=H(Y)=I(X;Y). The other extreme is X and Y being statistically independent: In that case I(X;Y) = 0.
@AlexanderYap Жыл бұрын
If I want to calculate the correlation between Likes Popcorn and Likes Troll 2, can I use something like Chi2? Similarly between Height bins and Likes Troll 2. What's the advantage of calculating the Mutual Information?
@statquest Жыл бұрын
The advantage is that we have a single metric that works on both continuous, discrete and mixed variables and we don't have to make any assumptions about the underlying distributions.
@yourfutureself4327 Жыл бұрын
i'm more of a 'Goblin 3: the frolicking' man myself
@statquest Жыл бұрын
bam!
@Tufelkind9 ай бұрын
It's like FoodWishes for stats
@statquest9 ай бұрын
:)
@sera-masumi3 ай бұрын
2:11 baam
@sera-masumi3 ай бұрын
8:48 double baaaam
@sera-masumi3 ай бұрын
9:28 tiny baaaam
@statquest3 ай бұрын
ha! :)
@viajedali76632 ай бұрын
tiny bam
@statquest2 ай бұрын
:)
@user-hl6xe8dz9x10 күн бұрын
puop poopup pooh
@statquest9 күн бұрын
:)
@rogerc23 Жыл бұрын
Ummm I know I have a cold right now but did anyone only hear an Italian girl speaking ?
@statquest Жыл бұрын
?
@AxDhan Жыл бұрын
small bam = "bamsito"
@statquest Жыл бұрын
Ha! :)
@TommyMN Жыл бұрын
If I could I'd kiss you on the mouth, wish you did a whole playlist about data compression
@statquest Жыл бұрын
Ha! I'll keep that topic (data compression) in mind.
@FREELEARNING Жыл бұрын
Great content. But just don't sing, you're not up to that.
@statquest Жыл бұрын
Noted! :)
@VaibhaviDeo Жыл бұрын
i will fite you if you tell daddy stat quest what to do what not to do
@igorg4129 Жыл бұрын
I was always interested how should we think if we want to invent such a technique. Imean ok, lets say I "suspect" that the probabilities here should do the job, and say my goal is to get at the end of a day some "flag" from 0 to 1 which indicates the strenght of a relationship, but how should I think on, to deside like what comes to denominator vs nominator, when use log etc. There should be something like an "thinking algorithm" P.s Understanding this will be very helpfull in understanding the existing fancy formulas
@statquest Жыл бұрын
I talk more about the reason for the equation in my video on Entropy: kzbin.info/www/bejne/j6XIk3qMrZJ5rtk