Supervised Learning and Support Vector Machines

  Рет қаралды 5,135

Nathan Kutz

Nathan Kutz

Күн бұрын

Пікірлер: 7
@Enem_Verse
@Enem_Verse 3 жыл бұрын
You are one of the greatest teacher of mankind
@billykotsos4642
@billykotsos4642 4 жыл бұрын
These videos are treasure.
@anantchopra1663
@anantchopra1663 4 жыл бұрын
What does the constraint imply geometrically in the linear SVM optimization problem?
@siranguru
@siranguru 7 ай бұрын
Thank you for the lecture Can anyone explain the reason behind the other factors apart from the loss function in the optimization equation? why do we need to reduce the distance of the line or the hyperplane center from the axis central point? -> ||w||^2 and what is the 'subject to' condition? how did it come by or what is its purpose? why should the points be parallel to the SVM line ( assuming dot product) correct me on this if it is wrong
@JiaheWang-f4d
@JiaheWang-f4d 4 ай бұрын
||w||^2 actually is the inverse of distance(magnitude), which is not mentioned in the lecture. You can find other explanation from internet.
@JiaheWang-f4d
@JiaheWang-f4d 4 ай бұрын
Does anyone can explain the subject to min|xj.w|=1, why it looks like in this formula? 16:03
@siranguru
@siranguru 4 ай бұрын
We have the main line as W.X +b =0 and for the margins we will have the lines as W.X +b = +- k. On normalizing by k we will have W.X + b = +-1. So when y = +1 for green dots and -1 for the magenta dots and to have all points in the corresponding direction we will have the constraint y(W.X+b) >=1 To give some lenience and not have a hard bound we will have W.X +b = 1 - ζ where ζ is Zeta. if ζ = b then W.X = 1. Which makes the constraint y(W.X) >= 1 i.e. the minimum of W.X = 1 since y = 1 Correct me if I am wrong
Supervised Learning and Linear Discriminants
19:05
Nathan Kutz
Рет қаралды 6 М.
Support Vector Machines: All you need to know!
14:58
Intuitive Machine Learning
Рет қаралды 173 М.
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
Unsupervised Learning:  k-means Clustering
17:56
Nathan Kutz
Рет қаралды 4 М.
Mega-R5. Support Vector Machines
49:53
MIT OpenCourseWare
Рет қаралды 59 М.
Support Vector Machines Part 1 (of 3): Main Ideas!!!
20:32
StatQuest with Josh Starmer
Рет қаралды 1,4 МЛН
Neural Networks:   1-Layer Networks
25:01
Nathan Kutz
Рет қаралды 8 М.
Feature Selection and Data Mining
23:42
Nathan Kutz
Рет қаралды 4,8 М.
Supervised versus Unsupervised Learning
21:48
Nathan Kutz
Рет қаралды 4,6 М.
SVM Kernels : Data Science Concepts
12:02
ritvikmath
Рет қаралды 79 М.
Unsupervised Learning:  Hierarchical Clustering and Dendrograms
18:00
Python Machine Learning #4 - Support Vector Machines
17:13
NeuralNine
Рет қаралды 13 М.
16. Learning: Support Vector Machines
49:34
MIT OpenCourseWare
Рет қаралды 2 МЛН
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН