Construct Binary Tree from Inorder and Preorder Traversal - Leetcode 105 - Python

  Рет қаралды 263,069

NeetCode

NeetCode

Күн бұрын

Пікірлер: 259
@NeetCode
@NeetCode 3 жыл бұрын
🌲Tree Playlist: kzbin.info/www/bejne/hZ-2n2WOerZng7s
@stupidfrog
@stupidfrog 9 ай бұрын
Easily the hardest 'Medium' I have ever seen. If you didn't get this one, don't be discouraged. Just get really good at recursive thinking and come back to it later.
@symbol767
@symbol767 2 жыл бұрын
This is the type of problem you give someone you don't want to hire...
@noelcovarrubias7490
@noelcovarrubias7490 Жыл бұрын
ahahah right? It's doable but very tricky
@ayushpatel5463
@ayushpatel5463 Жыл бұрын
It took my 2 days to solve 😂😂
@techlogical8059
@techlogical8059 10 ай бұрын
Lol 😂
@LeetCodeMastery-y9d
@LeetCodeMastery-y9d 9 ай бұрын
Totaly
@doc9448
@doc9448 6 ай бұрын
@@ayushpatel5463 You're supposed to cheat and learn, not spend 2 days working on pre-solved problems
@THEAVISTER
@THEAVISTER 2 жыл бұрын
Thanks for all your help NeetCode and all the effort you put into teaching concepts thoroughly!!
@blitzspirit
@blitzspirit Жыл бұрын
Storing the index for mid in the hash map would be more efficient IMO. That would lead to time complexity O(n) otherwise it's O(n^2). Adding a section of time complexity is what's missing in most videos. IFF possible, please create time complexity videos for Neet75 and add the pertinent links in the description. That would be super helpful for people who are only using these videos to learn about the right approach to solving these problems. ``` # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: # takes the left and right bound of inorder, logic --> any given inorder index bisects the tree in left and right subtree def localBuildTree(leftBound, rightBound): nonlocal preOrderListIndex if leftBound > rightBound: return None newRootVal = preorder[preOrderListIndex] newRoot = TreeNode(newRootVal) preOrderListIndex += 1 newRoot.left = localBuildTree(leftBound, inorderIndexFor[newRootVal]-1) newRoot.right = localBuildTree(inorderIndexFor[newRootVal]+1, rightBound) return newRoot inorderIndexFor = dict() for index,element in enumerate(inorder): inorderIndexFor[element] = index preOrderListIndex = 0 return localBuildTree(0, len(preorder)-1) ```
@hypnotic9595
@hypnotic9595 10 ай бұрын
Yes, I like your implementation much better. Using the splice operator, as in his example, will also cost O(n) each time it occurs I think.
@pekarna
@pekarna 2 жыл бұрын
Hi, this is stated MEDIUM but I think it's quite HARD. Anyway, I have an improvement: The lookup of the "pivot" in the Inorder array makes this order of magnitude more complex. The worst case around O(n^2). I took an approach of keeping a stack, whose top tells me if I should close the current subtree. It is O(n). The code as it is is not pleasing to look at, but works: fun buildTree(preorder: IntArray, inorder: IntArray): TreeNode? { if (preorder.isEmpty()) return null var curI = 0 val root = TreeNode(preorder[0]) val stack = Stack().apply { this.add(preorder[0]) } var curP = 1 fun hasNext() = curI < inorder.size && curP < preorder.size fun nextInorder() = if (curI >= inorder.size) null else inorder[curI] fun stackPeekOrNull() = if (stack.isEmpty()) null else stack.peek() fun dfs(curNode: TreeNode) { if (hasNext() && nextInorder() != curNode.`val`) { curNode.left = TreeNode(preorder[curP++]) stack.push(curNode.left!!.`val`) dfs(curNode.left!!) } if (nextInorder() == curNode.`val`) { curI++ stack.pop() if (curI >= inorder.size) return } if (nextInorder() == stackPeekOrNull()) { return } if (nextInorder() != curNode.`val` && nextInorder() != stackPeekOrNull()) { curNode.right = TreeNode(preorder[curP++]) stack.push(curNode.right!!.`val`) dfs(curNode.right!!) } } dfs(root) return root }
@sucraloss
@sucraloss Жыл бұрын
Was thinking the same on the difficulty level, this felt like a massive ramp-up compared to the mediums I was doing
@tranpaul4550
@tranpaul4550 11 ай бұрын
agree with you, this one is definitely Hard that requires some tricks and DFS configuration. Thats why I dont trust Leetcode medium and hard labels after a while of grinding.
@gregwhittier5206
@gregwhittier5206 10 ай бұрын
I don't think it's explicitly stated here (apologies if it is), but not only is the root the first element of the preorder, but all the left subtree items come before the right subtree which is way taking the first mid items only gets left subtree values. And buildtree recursing in preorder (root, left, right) is necessary. This is my mod to use a hashmap and indexing to get linear time. class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: inorder_idx_by_val = {inorder[i]:i for i in range(len(inorder))} def _buildTree(pi, pj, ii, ij): if (pi > pj) or (ii > ij): return None node = TreeNode(val=preorder[pi]) mid = inorder_idx_by_val[node.val] node.left = _buildTree(pi+1, pi+(mid-ii), ii, mid-1) node.right = _buildTree(pi+(mid-ii)+1, pj, mid+1, ij) return node return _buildTree(0, len(preorder)-1, 0, len(inorder)-1) Your channel is awesome and thanks for putting all this out there.
@ajvercueil8111
@ajvercueil8111 8 ай бұрын
this is the best code i've seen for this problem, way to go!
@symbol767
@symbol767 2 жыл бұрын
To optimize this further from O(N^2) to O(N): - Create a hashset with the keys being all inorder numbers and their indexes. (Ask your interviewer to confirm all inorder values are UNIQUE). Now instead of having to use inorder.index you can do inorderHash[preorder[0]] Now its still O(N^2) because we are slicing the array every time we do recursion. Lets get rid of that. To handle this we will simply reverse our preorder array, so usually we need to access the first index everytime, now we can just pop the end of the array off everytime instead of slicing to get the correct first index everytime. We basically turned our preorder array into a postorder class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: inorderHash = {}; for i in range(len(inorder)): inorderHash[inorder[i]] = i; preorder.reverse(); return self.build(preorder, inorderHash, 0, len(inorder) - 1); def build(self, postorder, inorderHash, start, end): if start > end: return; postorderNum = postorder.pop(); curIdx = inorderHash[postorderNum]; root = TreeNode(postorderNum); root.left = self.build(postorder, inorderHash, start, curIdx - 1); root.right = self.build(postorder, inorderHash, curIdx + 1, end); return root;
@mprasanth18
@mprasanth18 Жыл бұрын
Good optimization technique
@illu1na
@illu1na Жыл бұрын
reverse and pop is great technique. But like spaceoddity1567 said, its really not postorder.
@gustavo-yv1gk
@gustavo-yv1gk 11 ай бұрын
nice
@ZhouHenry
@ZhouHenry 10 ай бұрын
Reversing a preorder array is not equivalent to a postorder array. Other than that, pretty good optimization.
@빡빠기-c6e
@빡빠기-c6e 2 ай бұрын
Don't you also need to adjust the start and end idx since the preorder is reversed?
@sheexcel7134
@sheexcel7134 3 жыл бұрын
But the time and space complexity are both O(n^2) because of the inorder.index() function and passing subarrays of preorder/inorder in each stack of the recursion.
@gouthamr8214
@gouthamr8214 2 жыл бұрын
We can create a hash map and make it a constant time operation
@shriharikulkarni3986
@shriharikulkarni3986 2 жыл бұрын
@@gouthamr8214 We are passing the sublist at each call, creating hashmap requires O(n) time only right?
@gouthamr8214
@gouthamr8214 2 жыл бұрын
@@shriharikulkarni3986 creating hashmap will be O(n) but accessing will be a constant time operation
@shriharikulkarni3986
@shriharikulkarni3986 2 жыл бұрын
@@gouthamr8214 at each step why should we create hashmap if i am only traversing once ? After i travel once that too i return at the first hit itself, i never use that same hashmap again in the code ever.
@gouthamr8214
@gouthamr8214 2 жыл бұрын
@@shriharikulkarni3986 u just have to create hashmap once
@darhkz3900
@darhkz3900 2 жыл бұрын
4:45. The 2nd value in preorder is not guaranteed to be the left node because it might not have a left node. What is guaranteed is in preorder = [root, [leftSubTreeValues], [rightSubTreeValues]]. A node's left subtree values come before its right subtree values in preorder traversal if looking at it in array form.
@cmelch
@cmelch 2 жыл бұрын
I also noticed this when he said that. In the example tree, if we take out the 9, the root of 3 has just a right sub tree. What we do know is that any value to the right of a node in preorder is a child. We just do not know which one.
@ThePacemaker45
@ThePacemaker45 Жыл бұрын
that wasn't relevant to his solution so I guess he just misspoke there. Good catch though I wondered the same thing.
@sameerkrbhardwaj7439
@sameerkrbhardwaj7439 Жыл бұрын
if we don't have 9 then in preorder list after one recursion the list will be empty and hence we will get null value for left subtree
@theanguyen1015
@theanguyen1015 2 жыл бұрын
Thank you. This is very easy to understand. You saved me from sitting at the computer for 5 hours more.
@leonscander1431
@leonscander1431 4 ай бұрын
God damn. I was about to give up, but I solved it. I was trying to come up with a brute force solution and the key moments that helped me during my thought process were: 1. Noticing that the first element in preorder is always a root node. 2. Noticing that everything to the left of the root value in inorder list is a left subtree and everything to the right is a right subtree. 3. Then you just need to figure out how to apply a recursion to above 2 statements to build the left and right subtrees.
@OMFGallusernamesgone
@OMFGallusernamesgone 2 жыл бұрын
How are you using mid from the inorder subarray to slice the preorder?
@galshufi
@galshufi Жыл бұрын
Notice that mid is equal to the number of nodes on the left tree
@swapnilrao9881
@swapnilrao9881 12 күн бұрын
@@galshufi is this problem supposed to be intuitive even in the slightest manner or am i just stupid. solving BST questions give a reality check often ngl lmao
@mannemsrinivas2685
@mannemsrinivas2685 Жыл бұрын
Instead of mid, If we rename it to leftTreeLength then we can understand the partitions very easily
@dansun117
@dansun117 3 жыл бұрын
I was also just going through this problem, I really like watching your videos, please keep posting!
@NeetCode
@NeetCode 3 жыл бұрын
Thanks, much appreciated 😃
@ritteshpv2196
@ritteshpv2196 2 жыл бұрын
Python Code | much more efficient solution in time and space | Improvised from neetcode solution | Must read Improvements: 1. Create a hashmap to retrieve index 2. Pass current interval of preorder and inorder instead of slicing class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: def r_build_tree(preorder_left, preorder_right, inorder_left): if preorder_left == preorder_right: return None nonlocal inorder_hash_map inorder_root_index = inorder_hash_map[preorder[preorder_left]] - inorder_left root = TreeNode(preorder[preorder_left]) root.left = r_build_tree(preorder_left + 1, preorder_left + inorder_root_index + 1, inorder_left) root.right = r_build_tree(preorder_left + inorder_root_index + 1, preorder_right, inorder_left + inorder_root_index + 1) return root inorder_hash_map = {} for index, node in enumerate(inorder): inorder_hash_map[node] = index return r_build_tree(0, len(preorder), 0)
@bishalhazarika135
@bishalhazarika135 2 жыл бұрын
Your code is longer . How it is effiicient wow. It seem more complex
@illu1na
@illu1na Жыл бұрын
Thanks its great. personally, it makes more sense for me to use L, R pointers for inorder rather than preorder as per Neetcode's suggestion. Here is mine, i don't like nonlocal stuffs so i made it into separate function. class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: self.index_map = { val: i for i, val in enumerate(inorder) } return self.build_tree_recur(preorder, inorder, 0, 0, len(inorder) - 1) def build_tree_recur(self, preorder, inorder, preorder_start, inorder_start, inorder_end): if preorder_start >= len(preorder) or inorder_start > inorder_end: return None root = TreeNode(val=preorder[preorder_start]) mid = self.index_map[root.val] root.left = self.build_tree_recur(preorder, inorder, preorder_start + 1, inorder_start, mid - 1) root.right = self.build_tree_recur(preorder, inorder, preorder_start + mid - inorder_start + 1, mid + 1, inorder_end) return root
@mohamadilhamramadhan6354
@mohamadilhamramadhan6354 Жыл бұрын
My solution beats 98.95% in runtime and 91.32% in memory. It uses stack, use preorder to go down (add left/right node) and inorder to go up: let result = new TreeNode(preorder[0]); let stack = [result]; let current = result; let j = 0; // inorder pointer let addSide = 0; // 0 left, 1 right for (let i = 1; i < preorder.length; i++) { console.log('ADD LEFT', current.val); console.log('stack[stack.length - 1]', stack[stack.length - 1].val); // going up the tree; while (inorder[j] === stack[stack.length - 1].val) { current = stack.pop(); j++; addSide = 1; // if going up then the next add side is right if (stack[stack.length - 1] === undefined) break; } // going down the tree after adding if (addSide === 0) { current.left = new TreeNode(preorder[i]); current = current.left; } else { current.right = new TreeNode(preorder[i]); current = current.right; } stack.push(current); addSide = 0; } return result;
@tarandeepsingh1288
@tarandeepsingh1288 3 жыл бұрын
Yo man this is the easiest explanation I found on the internet you gained a sub
@TaqviAbsar
@TaqviAbsar 5 ай бұрын
This is a really good explanation. Perhaps the best one I’ve seen. Also, an unpopular opinion: it is quite a good problem too as in it ties both of the in-order and pre-order traversal techniques.
@world11191
@world11191 10 ай бұрын
for the preorder indexing, I prefer to say left_size = mid and then use left_size instead of mid. It makes more sense for my mind - since I feel like mid was used more in the context of inorder (as an index of inorder) rather than preorder. For the inorder indexing, I use mid though, cause it makes sense not to include the midpoint. Ex. ``` root = TreeNode(preorder[0]) mid = inorder.index(root.val) left_size = mid root.left = self.buildTree(preorder[1:1+left_size], inorder[:mid]) root.right = self.buildTree(preorder[1+left_size:], inorder[mid+1:]) ```
@andy__yeyo
@andy__yeyo 7 ай бұрын
I was not able to understand indexing of preorder part but this comments got me. Thank you!
@Modupalli4545
@Modupalli4545 9 ай бұрын
Thanks @NeetCode for everything you are doing. I know your solution is awesome. But, I just tried your subsequent solution (build binary tree from in-order and post-order) and try to implement this problem and it looks like it is working as expected and efficient too def buildTree_nc(self, preorder: list[int], inorder: list[int]) -> Optional[TreeNode]: map_inorder = { v : i for i,v in enumerate(inorder)} def helper(l, r): if l > r: return None root = TreeNode(preorder.pop(0)) idx = map_inorder[root.val] if idx - l > 0: root.left = helper(l, idx - 1) if r - idx > 0: root.right = helper(idx + 1, r) return root return helper(0, len (preorder)-1)
@apriil9822
@apriil9822 5 ай бұрын
There's no way for me to think of this solution. Good explanation, thanks!
@DenysGarbuz
@DenysGarbuz 7 ай бұрын
The solution is concise enough. But time and space complexity may be way better. Instead of creating new lists for each subproblem we can use pointers which will represents boundaries (left, right) in main preorder. And also instead of iterating in each subproblem through inorder to get current number index we can create map, which will store indices of each number. We will have space O(n) & time O(n) On leetcode solution with these improvements runs at least 3 times faster.
@zl7460
@zl7460 Жыл бұрын
One issue with this approach (on an edge case): if the tree is nearly vertical (width 1 each level, randomly left or right), then .index would take O(n) time on average and O(n^2) total. This can be avoided in an iterative method w/ hashmap.
@bob_jones
@bob_jones 2 жыл бұрын
A few things to improve speed or in general: 1) As several people have mentioned, using the index function is inefficient and will search through inorder in linear time until the corresponding value is found. It would be better to build a dictionary and continue to use that (e.g. with a helper function). Alternatively, at least in Java, using an array (list in python) as a map due to the limited input domain is more efficient. 2) Splicing is pretty inefficient as it takes extra time and memory to create the lists. It would be better to create a helper function and use indices.
@abdullahshahid9051
@abdullahshahid9051 2 жыл бұрын
Building the dictionary takes linear time too. Also note that index function does less work every recursive call due to the divide and conquer nature of this problem
@bob_jones
@bob_jones 2 жыл бұрын
@@abdullahshahid9051 That is true. However, as you mentioned, the work happens every recursive call. In the best and average case time complexities, the in-order search will be O(n lg(n)), considering all the recursive calls, and worst case O(n^2). If you modify the method to only have the dictionary built once, then it will be O(n) for best, average, and worst cases, considering all the recursive calls.
@abdullahshahid9051
@abdullahshahid9051 2 жыл бұрын
@@bob_jones That's a good point, I didn't think of it that way
@StfuSiriusly
@StfuSiriusly Жыл бұрын
if you use a deque you can get O(n) from collections import deque class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: def helper(bound=None): if not inorder or inorder[0] == bound: return None root = TreeNode(preorder.popleft()) root.left = helper(root.val) inorder.popleft() root.right = helper(bound) return root inorder = deque(inorder) preorder = deque(preorder) return helper()
@Han-ve8uh
@Han-ve8uh 24 күн бұрын
@@StfuSiriusly How did you think up this solution? Other solutions will create their own stack and insert/pop elements from preorder. How did you realize inorder can already be used as a stack? What does bound do? What happens without bound? How did you know inorder[0] == bound is the check to do in base case?
@airsoftbeast11234
@airsoftbeast11234 2 жыл бұрын
Finding the index is O(N) I would allocate a map pointing all the in order values to its index so you can look up indexes in O(1), but at the cost of some space complexity
@mearaftadewos8508
@mearaftadewos8508 2 жыл бұрын
nice point: io = {} j = 0 for i in inorder: io[i] = j j += 1 root = Node(preorder[0]) mid = io[preorder[0]]
@JohnnyMetz
@JohnnyMetz 2 жыл бұрын
But creating the mapping takes O(n), which is the same as .index(), so I don't think this will help.
@airsoftbeast11234
@airsoftbeast11234 2 жыл бұрын
@@JohnnyMetz it definitely helps, it’s O(n) preprocessed one time, this is O(N) within every recursive loop
@Dust1nPham
@Dust1nPham 2 жыл бұрын
Since the first value in preorder is always the root, isn't it also possible to use preorder[1:] as inputs for both left and right instead of using mid to split it?
@khalilkhawaja4909
@khalilkhawaja4909 11 ай бұрын
No, because if there is no left node to the root, then mid would be 0.
@ishtiaqueahmed5925
@ishtiaqueahmed5925 11 ай бұрын
thank you so much. Just used this for my final exam!!
@wlcheng
@wlcheng 3 жыл бұрын
Looking for the video explanation for LeetCode 106 and found this explanation for 105 is very useful too. Thank you so much! :)
@ajayjaadu42
@ajayjaadu42 2 жыл бұрын
loves from India and thank you sir
@mashab9129
@mashab9129 3 жыл бұрын
the very best explanation for this problem. thank you!!
@shamilgurban6439
@shamilgurban6439 2 ай бұрын
For people who struggle to understand why he takes until mid in preorder, even though mid comes from inorder: in preorder array elements that is lefter than root in tree has same count with count of elements lefter than mid element in inorder
@Wuaners
@Wuaners 2 ай бұрын
Saved my day. Many thanks, genius.
@abcdabcdeabcdef
@abcdabcdeabcdef 5 ай бұрын
You should also consider the Time complexity of this solution which is nlogn. Easy to use a map of value:index for inorder to get index position in constant time making the overall time complexity n.
@cmelch
@cmelch 2 жыл бұрын
You mentioned that with preorder traversal, the value to the right of another is always the left subtree root. This is not true. In the example tree, if you take away the 9 the root node of 3 has just a right subtree. What we do know with preorder is that any node to the right of another is a child node. We just don't know which one. The solution still works because when we partition the tree we would get an empy list on the left recursive call and return nullptr as our inorder traversal would have the root at the far left of the list and indicating no left children. Just want to clarify this.
@richardnorth1881
@richardnorth1881 2 жыл бұрын
Yes, agreed. I pretty much came down to the comments because I was thinking the exact same thing.
@eminence_Shadow
@eminence_Shadow Жыл бұрын
I code in Java...but I watch your videos for better explanation...and code it myself...how cool
@alexanderk5399
@alexanderk5399 Жыл бұрын
I want to thank you soooo much! The visualizations & level of analysis is exactly what I needed to understand the algorithm-level solution. Your videos are the best!
@abhineetsharma1561
@abhineetsharma1561 3 жыл бұрын
Thanks for the explanation, it was really helpful. You are the Mr.Miyagi of Competitive Coding. P.S: Please keep posting !
@meowmaple
@meowmaple 2 жыл бұрын
leetcode*, not competitive programming
@ArdianUmam
@ArdianUmam Ай бұрын
Great explanation, thanks! I wonder, what if there is a duplicate in the inorder list?
@halahmilksheikh
@halahmilksheikh 2 жыл бұрын
mid is found from inorder but why can you use it to index elements in preorder? Will the lengths of inorder and preorder be identical throughout the recursions and array splitting?
@OMFGallusernamesgone
@OMFGallusernamesgone 2 жыл бұрын
im sure his version works, but i just followed his logic from his explanation, slice preorder by the lengths of the inorder subarrays
@abdulrehmanamer4252
@abdulrehmanamer4252 Жыл бұрын
Woah! A really clear elaboration I have ever heard
@susquon
@susquon Жыл бұрын
I love the structure of your videos! You do such a good job at explaining the approach and how to go about the problem, that I often am able to figure out the code before you even get to that part. Thanks so much!
@Rahul-pr1zr
@Rahul-pr1zr 3 жыл бұрын
Good explanation! I couldn't come up with the idea to partition the pre-order array. Is the reason why you're partitioning the pre-order array with the left and right sub-array sizes of the in-order array because in pre-order left sub-tree comes before right sub-tree?
@NeetCode
@NeetCode 3 жыл бұрын
Yes thats exactly correct.
@vivekshaw2095
@vivekshaw2095 2 жыл бұрын
you dont need to partition it you could just pop(0) the value and then pass preorder in both recursion
@Rajib317
@Rajib317 7 ай бұрын
// For java lovers // We basically need to find the things we see in the example picture from the two arrays given we know the value of mid. int[] leftPreorder = Arrays.copyOfRange(preorder, 1, mid + 1); // second parameter is exclusive just like python. int[] leftInorder = Arrays.copyOfRange(inorder, 0, mid); int[] rightPreorder = Arrays.copyOfRange(preorder, mid + 1, preorder.length); int[] rightInorder = Arrays.copyOfRange(inorder, mid + 1, inorder.length); root.left = helper(leftPreorder, leftInorder); root.right = helper(rightPreorder, rightInorder);
@TransformationDiares
@TransformationDiares 2 жыл бұрын
Best solution explanation for this problem on internet :D
@mudit4713
@mudit4713 2 жыл бұрын
you just made a complicated problem seem f**n easy. Thank you!!
@parthshah1563
@parthshah1563 2 жыл бұрын
if not preorder or not inorder: return None # Take the root values of subtrees from queue root_val = preorder.pop(0) root = TreeNode(root_val) # Find that root val's index in inorder list to compute the LEFT and RIGHT ind = inorder.index(root_val) root.left = self.buildTree(preorder, inorder[:ind]) root.right = self.buildTree(preorder, inorder[ind+1:]) return root
@jasmeetsingh5425
@jasmeetsingh5425 2 жыл бұрын
I got asked this question in my bloomberg interview, and i blew it!
@vamsipathapati1122
@vamsipathapati1122 2 жыл бұрын
This should be labelled hard🤯
@Lukeisun7
@Lukeisun7 Жыл бұрын
LETS GO! This is the first time I completed a problem by myself where it looks identical to yours, that felt good
@brawlboy1382
@brawlboy1382 Жыл бұрын
There is NO WAY you solved it unless it took you like days
@Lukeisun7
@Lukeisun7 Жыл бұрын
@@brawlboy1382 I think it took like an hour and a lot of pen and paper work haha
@kickradar3348
@kickradar3348 3 жыл бұрын
does the subarray in python add space complexity? As opposed to using start and end pointers?
@eddiej204
@eddiej204 2 жыл бұрын
I don't really get why we pass `preorder[1:mid+1]` for building the left sub tree🤔
@eddiej204
@eddiej204 2 жыл бұрын
Ah, I see. Because `mid` from inorder array tells us how many items which will be in the left sub tree. So we count from that. preorder = [400,9,1,2,20,15,17] inorder = [1,9,2,400,15,20,7] mid = 3 (3 is an index when the number is 400) left sub tree will contain [1,9,2] right sub tree will contain [15,20,7] preorder[1:mid+1] = [9,1,2]
@madhubabu4779
@madhubabu4779 3 жыл бұрын
thanks for making it simple
@pro_myth_eus6897
@pro_myth_eus6897 8 ай бұрын
My question is if they replace one of the arrays with the postorder array, will it still be possible to build the tree?
@mohamadilhamramadhan6354
@mohamadilhamramadhan6354 Жыл бұрын
Elegance logic and code implementation. You always surprises me. 💥
@girirajrdx7277
@girirajrdx7277 2 жыл бұрын
@14:49 why should we include the mid index? the left part only include 1 index to mid-1 index right?..the mid is the root node itself
@navaneethmkrishnan6374
@navaneethmkrishnan6374 Жыл бұрын
Finding the algorithm is not that hard for this (or at least the pattern). It's writing code for this that is hard. Thanks man!
@soicooc3500
@soicooc3500 7 ай бұрын
(a) Inorder (Left, Root, Right) : (b) Preorder (Root, Left, Right) : (c) Postorder (Left, Right, Root) :
@alieverbol
@alieverbol 3 жыл бұрын
Thank you NeetCode so much
@affiliatastic1269
@affiliatastic1269 3 ай бұрын
even if we pass the same preorder list excluding the 0th element , it should work ?
@abdifatahmoh
@abdifatahmoh 2 жыл бұрын
Damn, this Python's slicing is very very powerful. This makes superior to the other programming langauge when it comes to coding interview.
@sathyapraneethchamala9147
@sathyapraneethchamala9147 Жыл бұрын
true!! struggling with AddressSanitizer: heap-buffer-overflow in c++ from past few hours!!
@bhabishyachaudhary3495
@bhabishyachaudhary3495 Жыл бұрын
Great explanation thank you so much.
@cici-lx6np
@cici-lx6np 2 жыл бұрын
Thank you very much for the videos. They helped me a lot! I wrote down the code for Inorder and Postorder Traversal, based on this video 😀 if len(inorder)==0 or len(postorder)==0: return None tree_len = len(postorder) root = TreeNode(postorder[tree_len -1]) mid = inorder.index(postorder[tree_len -1]) root.left = self.buildTree(inorder[:mid], postorder[0:mid]) root.right = self.buildTree(inorder[mid+1:], postorder[mid:tree_len -1]) return root
@Molly-e5w
@Molly-e5w 8 ай бұрын
O(n) solution: class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: # map the node value to its index for O(1) lookups inorder_map = {inorder[i]: i for i in range(len(inorder))} def build(preorder, inorder_start, inorder_end): if not preorder or not inorder: return None left_size = inorder_map[preorder[0]] if left_size < inorder_start or left_size > inorder_end: return None root = TreeNode(preorder.pop(0)) root.left = build(preorder, inorder_start, left_size - 1) root.right = build(preorder, left_size + 1, inorder_end) return root return build(preorder, 0, len(inorder) - 1)
@nikhilaradhya4088
@nikhilaradhya4088 Жыл бұрын
The code can't be more efficient❤❤
@dediprakasa2162
@dediprakasa2162 Жыл бұрын
Really nice explanation. Thanks 👍
@WR4TH8101
@WR4TH8101 2 жыл бұрын
Thanks, G.O.A.T . all time savior
@zaffa12
@zaffa12 8 ай бұрын
This one made me cry from feeling dumb
@illu1na
@illu1na Жыл бұрын
Only thing that is missing from Neetcode's otherwise almost perfect video is the time and space complexity analysis. So is his solution O(n^2) for time (n recur * n item slicing) and also O(n^2) space (n recur * each recur requiring n space?)?
@BobbyMully
@BobbyMully 2 жыл бұрын
class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: inorderDict = {elm:i for i,elm in enumerate(inorder)} # inorderDict[elm] = i for all of inorder def dfs(i, j, length): if length == 0: return None val = preorder[i] k = inorderDict[val] - j node = TreeNode(val=val) node.left = dfs(i+1, j, k) node.right = dfs(i+k+1, j+k+1, length-k-1) return node return dfs(0, 0, len(preorder))
@TheKikSmile
@TheKikSmile Жыл бұрын
One of the harder medium questions IMO
@antonyndungu5514
@antonyndungu5514 3 жыл бұрын
The solution is very clear and precise thanks.
@calculatorcalculator5998
@calculatorcalculator5998 Жыл бұрын
Thanks for explanation! Still the confusing part for me is that you're using the same "mid" index for both preorder and inorder arrays and cannot catch an idea why is it working :)
@leah7291
@leah7291 Жыл бұрын
That's explained around 12:05 "mid" is the index in the inorder array and also the length of the left subtree after 1 in the preorder array
@calculatorcalculator5998
@calculatorcalculator5998 Жыл бұрын
@@leah7291, yeah, but the neurons in my brain stubbornly resisted making the necessary connections. Now I finally seem to understand. But it's not something I could ever have figured out on my own
@shrimpo6416
@shrimpo6416 2 жыл бұрын
LOVE IT! I thought it would be a hard one but you make it so easy!!! I figure out the code just from your drawing explanation, because you explain the concept so clearly!!!
@OK-iw5im
@OK-iw5im 2 жыл бұрын
Awesome explanation thank you
@rahulsbhatt
@rahulsbhatt Жыл бұрын
I really liked this solution, but I have one question regarding dividing our preorder list, how did you arrive at the solution of choosing the left half and right half based on a pt you found in inorder list? Did my question made any sense?
@chenpr
@chenpr Жыл бұрын
Since mid is equal to the number of nodes on the left subtree. So we use mid to slice preorder arr because we know that the following 'mid' numbers of nodes after the root should be in left subtree.
@victoriatfarrell
@victoriatfarrell Жыл бұрын
Thanks@@chenpr , that was very helpful
@div0007
@div0007 2 жыл бұрын
Great explanation, my friend. Keep up the good work!
@TarasLeskiv
@TarasLeskiv 3 жыл бұрын
What is the time/space complexity of this solution?
@congminhinh2342
@congminhinh2342 3 жыл бұрын
simple, clear and short!
@josephcs1235
@josephcs1235 2 жыл бұрын
Notice there wasnt. Could you explain what the runtime and memory usage is? I was having a hard time trying to factor in the runtime and memory usage of the array slice.
@Lulit999
@Lulit999 2 жыл бұрын
Your solution has ~90MB memory usage, while this one have only 19MB memory usage (because we do not copy inorder/preorder sublists). class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: inorder_value_to_index = {value: x for x, value in enumerate(inorder) } node_index = 0 def build(left, right): nonlocal node_index if left > right: return None node = TreeNode(preorder[node_index]) split_point = inorder_value_to_index[node.val] node_index += 1 node.left = build(left, split_point - 1) node.right = build(split_point + 1, right) return node return build(0, len(preorder) - 1)
@sambase123
@sambase123 2 жыл бұрын
what if values are not unique?
@kirillzlobin7135
@kirillzlobin7135 4 ай бұрын
Preorder and inorder variables make sense only as inputs for the general function. As the number of elements should be the same. Later name preorder and inorder are misleading a bit. Because they do not represent all nodes of the tree and the number of elements in each of them is different. Do I understand this correctly?
@jeffwei
@jeffwei 2 жыл бұрын
nice solution, but you probably want to create a dictionary for looking up the root index in the inorder list-otherwise you're doing an O(n) look for each mid, which is O(log n) for the average case but O(n^2) in the worst case.
@ianokay
@ianokay Жыл бұрын
Is buildTree called for every node, and an index lookup is O(n), so is the solution here O(n^2)?
@abhicasm9237
@abhicasm9237 2 жыл бұрын
If the interviewer gives you this question, he doesn't want you.
@demaxl732
@demaxl732 11 ай бұрын
I need to brush up on divide and conquer problems
@sunnychoudhary4627
@sunnychoudhary4627 2 жыл бұрын
Greattt videos man. Can you do time and space at end of each video. That would literally finish whole cycle.
@eyalpery8470
@eyalpery8470 2 жыл бұрын
Excellent vid
@benjaminkeene5444
@benjaminkeene5444 2 жыл бұрын
Great solution vids. Just a heads up in the base case here, you do not have to check "preorder or inorder". They should progress with the exact same amount in each array so you just check if one of them is empty.
@brandenchong548
@brandenchong548 2 жыл бұрын
Is it better to use binary search instead of inorder.index to bring the time complexity down?
@nirupomboseroy6067
@nirupomboseroy6067 2 жыл бұрын
the array is not sorted or partially sorted so you cannot perform binary search you can use a hashmap, like the solution given on leetcode
@____________7035
@____________7035 2 жыл бұрын
through this explanation, it made more sense but this is definitely not a medium level question.
@chenhaibin2010
@chenhaibin2010 2 жыл бұрын
wow, such a neat solution. following the same thoughts, I was able to crack LC106
@navenkumarduraisamy6260
@navenkumarduraisamy6260 3 жыл бұрын
Please make a video on binary tree construction from preorder and postorder traversals!
@johnzhang8225
@johnzhang8225 3 жыл бұрын
Great Explanation, was elated to have found such good help.
@peiyurang7392
@peiyurang7392 3 жыл бұрын
Very nice explanation! Thank you!
@alexzhuisme
@alexzhuisme 2 жыл бұрын
Thanks for the explanation, helps a lot!
@NeetCode
@NeetCode 2 жыл бұрын
Glad it helped!
@jjhphotography
@jjhphotography 3 жыл бұрын
Really helpful video. The explanation was very thorough and helpful
@ambujhakhu7531
@ambujhakhu7531 3 жыл бұрын
The moment i start the video i like it coz i already know the explanation is gonna be awesome
@YashwanthKrishna1
@YashwanthKrishna1 Ай бұрын
I did the same, but I think this doesn't cover a case, where leaf nodes have same values as root node. then, inorder slice given to the left and right tree nodes is incorrect. Hope you see this comment
Binary Tree Maximum Path Sum - DFS - Leetcode 124 - Python
15:19
Making an Algorithm Faster
30:08
NeetCodeIO
Рет қаралды 147 М.
Every team from the Bracket Buster! Who ya got? 😏
0:53
FailArmy Shorts
Рет қаралды 13 МЛН
Their Boat Engine Fell Off
0:13
Newsflare
Рет қаралды 15 МЛН
How I would learn Leetcode if I could start over
18:03
NeetCodeIO
Рет қаралды 687 М.
Dynamic Programming isn't too hard. You just don't know what it is.
22:31
DecodingIntuition
Рет қаралды 196 М.
Climbing Stairs - Dynamic Programming - Leetcode 70 - Python
18:08
I Solved 100 LeetCode Problems
13:11
Green Code
Рет қаралды 244 М.
Implement Trie (Prefix Tree) - Leetcode 208
18:56
NeetCode
Рет қаралды 212 М.
Jump Game - Greedy - Leetcode 55
16:28
NeetCode
Рет қаралды 255 М.
Minimum Height Trees - Leetcode 310 - Python
23:30
NeetCodeIO
Рет қаралды 21 М.
LeetCode was HARD until I Learned these 15 Patterns
13:00
Ashish Pratap Singh
Рет қаралды 576 М.