Prim's Algorithm - Minimum Spanning Tree - Min Cost to Connect all Points - Leetcode 1584 - Python

  Рет қаралды 106,021

NeetCode

NeetCode

Күн бұрын

Пікірлер: 100
@NeetCode
@NeetCode 3 жыл бұрын
🚀 neetcode.io/ - I created a FREE site to make interview prep a lot easier, hope it helps! ❤
@gauravsukhramani3825
@gauravsukhramani3825 Жыл бұрын
nice initiative
@another14edits74
@another14edits74 2 жыл бұрын
you have no idea how helpful your videos have been to me I went through 2 articles and 2 youtube videos before I realized you have a video on Prim's Algorithm (yes I'm kind of oblivious) and then it became pretty clear to me. Thank you man, cheers
@ameynaik2743
@ameynaik2743 3 жыл бұрын
Excellent video, main take away is, it is just like BFS + priority queue (instead of queue in BFS) ; also you will be adding duplicates hence complexity to pop from the min-heap is n^2*log(n)
@Grawlix99
@Grawlix99 2 жыл бұрын
As other commenters have mentioned, we don't need to generate all edges ahead of time. It's more efficient to track 'remaining' points and only generate edges for points that still need to be visited. For all remaining unvisited nodes, we can calculate the edge cost and push it to the minheap directly. Here's my code (don't get hung up on the lambda, it's just an 'in-inline' function): def minCostConnectPoints(self, points: List[List[int]]) -> int: manhattan = lambda p1, p2: abs(p1[0] - p2[0]) + abs(p1[1] - p2[1]) pq = [(0, tuple(points[0]))] mincost = 0 toVisit = set([tuple(x) for x in points]) while pq: curCost, curNode = heapq.heappop(pq) if curNode not in toVisit: continue toVisit.remove(curNode) mincost += curCost if len(toVisit) == 0: break for n in toVisit: heapq.heappush(pq, (manhattan(curNode, n), n)) return mincost
@castorseasworth8423
@castorseasworth8423 Жыл бұрын
Genius! Small suggestion, you can avoid this line: "if len(toVisit) == 0: break" If your while loop condition is instead: ``` while toVisit: ```
@castorseasworth8423
@castorseasworth8423 Жыл бұрын
​@@Naveenslab In this leetcode problem, the min heap is just a tool to get the next neighboring edge with minimum cost, as soon as we visited all edges the algorithm is finished, the min heap can be discarded because any remaining elements that we didn't pop are bigger than the minimum. Remember we are trying to find the minimum cost among points, we don't care about all possible costs since those will also incluse costs larger than the minimum possible answer.
@DavidDLee
@DavidDLee 7 ай бұрын
Why is it more efficient? Looks like it's the same complexity.
@iamthecondor
@iamthecondor 6 ай бұрын
​@@DavidDLee In the original solution, you're generating all possible edges for every point. By doing it like this, you're only generating edges between your curNode and the ones in "toVisit". The larger the length of points, the more time you'll end up saving.
@DavidDLee
@DavidDLee 6 ай бұрын
@@iamthecondor I see. But, same complexity still.
@garvitbhatia8395
@garvitbhatia8395 10 ай бұрын
I am so used to your coding style, I coded this question up by myself in c++ and it is the same, literally the same how you did it. Great list.
@tusov8899
@tusov8899 3 жыл бұрын
The tutorial is totally smooth and helpful. You are definitely one of the my best ds and algo online mentor during hunting job (the other is genius Erik Demaine ...) Again, appreciate your knowledge sharing and thank you so much!!!
@trantung2013
@trantung2013 2 жыл бұрын
Precalculating all the edge length is quite time consuming. The distance from one vertex to every remainings should be calculated in the while loop below since the length of vertices will be reduced after each step.
@ladydimitrescu1155
@ladydimitrescu1155 Жыл бұрын
He explained he wanted to keep the prim's portion separate from non-related prim atleast 3 times in the video
@RC-bm9mf
@RC-bm9mf 10 ай бұрын
18:48
@brianevans4975
@brianevans4975 3 жыл бұрын
Great walkthrough - LC Explore does a good job of explaining algorithms, but doesn't do anything for implementing. Walking through with code was very helpful.
@hongliangfei3170
@hongliangfei3170 2 жыл бұрын
You are the go-to channel once I want to learn anything
@crit19871
@crit19871 3 жыл бұрын
This channel is the best when it comes to LC solutions. Could you please make a video on "Subarray sum equals K" and "Maximum size subarray sum equals k". These problems are based on the concept of hashmap in 2 sum, yet when it comes to implementation, they are not that trivial.
@CEOofTheHood
@CEOofTheHood 3 жыл бұрын
bro i have struggled soo much with these.
@NeetCode
@NeetCode 3 жыл бұрын
Yes I will try to do the in the near future
@sammyj29
@sammyj29 2 жыл бұрын
What a beautiful explanation! I am going to implement this in C++. Thanks for the video!! Learning a lot from your channel and I am also aiming to become a Noogler soon :)
@chinesemimi
@chinesemimi 3 жыл бұрын
Since we are finding the MST in a dense graph (a graph with many edges) - the complete graph, Prim’s algo is more efficient in basically every case.
@MinhNguyen-lz1pg
@MinhNguyen-lz1pg 2 жыл бұрын
nice solution and explanation! we actually need either of the checking condition for point in visited. Having both does not affect the overal TC.
@woostanley6290
@woostanley6290 6 ай бұрын
This is such a great and well-explained video.
@paddyd7642
@paddyd7642 2 жыл бұрын
You can think about the complexity as when you have n points optimal connected, to include another point, you need to find the best way to connect the point from every single already connected point. So each inclusion of another point is nlogn.
@VarunMittal-viralmutant
@VarunMittal-viralmutant 2 жыл бұрын
Came across this alternate solution to implement the same Prim's algo This one is simpler :) -------------------------------------------- d = dict() # Take first point and make it's cost as 0 all others infinity for i, (x, y) in enumerate(points): if i: d[(x, y)] = float("inf") else: d[(x, y)] = 0 ans = 0 # While there are still more points left while d: # Get the point with minimum cost x, y = min(d, key=d.get) # Add to current cost and remove the point from dict of points ans += d.pop((x, y)) # Relax/re-calculate cost of all the points from this point for x1, y1 in d: d[(x1, y1)] = min(d[(x1, y1)], abs(x - x1) + abs(y - y1)) return ans
@gagandeepgopalaiah6144
@gagandeepgopalaiah6144 2 жыл бұрын
You sir, are a legend.
@ashutoshlohogaonkar8348
@ashutoshlohogaonkar8348 3 жыл бұрын
Thank you for a such a detailed video explaining Prim's algorithm and building the solution..
@JameS00989
@JameS00989 2 жыл бұрын
Awesome video NeetCode you are best 🎉
@HenockTesfaye
@HenockTesfaye 2 жыл бұрын
You saved me! Thank you. Forever grateful
@benzz22126
@benzz22126 2 жыл бұрын
honestly if you taught a course, i would buy it. i dont normally consider them but you teach different :)
@reaiswaryaa
@reaiswaryaa 2 жыл бұрын
You are an awesome teacher, thank you for your videos ❤️
@DavidDLee
@DavidDLee 7 ай бұрын
Leetcode does not ask, but the algorithm presented does not provide a tree as output, only the cost.
@denshaSai
@denshaSai 3 жыл бұрын
When building the adj list, I thought you want to add every other nodes? but you are adding all nodes j for node i, where j>i. So you did: for i in range(N): for j in range(i+1, N): # build adj list but instead should it be: for i in range(N): for j in range(N): if i == j: continue # build adj list
@hikarisai7755
@hikarisai7755 2 жыл бұрын
think i know the answer. bec. this is undirected (bidirectional graph), so you don't need to check previous nodes you iterated over since you already assigned those 'neighbors' already
@jalbers3150
@jalbers3150 2 жыл бұрын
He does exactly what you are thinking he is just being a little clever about it. We don't have to start from j=0 each time because he adds two edges per inner loop. "adj[i] = append(dist,j)" AND "adj[j] = append(dist, i)"
@reqracer9932
@reqracer9932 2 жыл бұрын
very helpful! clear explanation!
@EranM
@EranM 7 ай бұрын
You can calculate distances on the fly, You don't have to get the full ADJ list, because PRIM is greedy. Every time you add a node, you don't need anything related to it for the next iterations... Just address all nodes as unconnected components and start connecting them using the minimum distance from the frontier.
@auroshisray9140
@auroshisray9140 2 жыл бұрын
Really grateful for the awesome explanation
@MP-ny3ep
@MP-ny3ep Жыл бұрын
Great Explanation !!!
@SoupHikes
@SoupHikes 2 жыл бұрын
As of now this solution is getting TLE on LC, because of a huge test case. To avoid it, calculate the Manhattan distance inside the Prims algorithm part. Only maintain neighbours list in the adjacency hashmap.
@SoupHikes
@SoupHikes 2 жыл бұрын
adjList = {i :[] for i in range(n)} for i in range(n): for j in range(1, n): adjList[i].append(j) adjList[j].append(i) for nei in adjList[node]: x1, y1 = points[node] x2, y2 = points[nei] dist = abs(x1 - x2) + abs(y1 - y2) if nei not in visit: heapq.heappush(minHeap, [dist, nei]) Rest everything can stay same!
@rahiljakir
@rahiljakir Жыл бұрын
import java.util.*; class point { int x; int y; public point(int x, int y) { this.x = x; this.y = y; } @Override public int hashCode() { return Objects.hash(x, y); } @Override public boolean equals(Object obj) { point p = (point) obj; if (this.x == p.x && this.y == p.y) { return true; } return false; } } class edge { point p1; point p2; int weight; public edge(point p1, point p2, int weight) { this.p1 = p1; this.p2 = p2; this.weight = weight; } } class Solution { public int prims(HashMap adjList, HashSet visited, PriorityQueue minHeap, int sum) { edge top = minHeap.poll(); if (top == null) { return sum; } while (visited.contains(top.p2)) { top = minHeap.poll(); if (top == null) { return sum; } } sum += top.weight; point start = top.p2; visited.add(start); List neighbours = adjList.get(start); neighbours.forEach((neighbour) -> { if (!visited.contains(neighbour)) { int weight = Math.abs(start.x - neighbour.x) + Math.abs(start.y - neighbour.y); minHeap.add(new edge(start, neighbour, weight)); } }); return prims(adjList, visited, minHeap, sum); } public int minCostConnectPoints(int[][] points) { if (points.length == 1) { return 0; } HashMap adjList = new HashMap(); PriorityQueue minHeap = new PriorityQueue((e1, e2) -> { return Integer.compare(e1.weight, e2.weight); }); for (int i = 0; i < points.length; i++) { for (int j = 0; j < points.length; j++) { if (i != j) { List temp = adjList.getOrDefault(new point(points[i][0], points[i][1]), new ArrayList()); temp.add(new point(points[j][0], points[j][1])); adjList.put(new point(points[i][0], points[i][1]), temp); } } } minHeap.add(new edge(null, new point(points[0][0], points[0][1]), 0)); int sum = 0; HashSet visited = new HashSet(); sum = prims(adjList, visited, minHeap, sum); return sum; } }
@Killswitch9071
@Killswitch9071 Жыл бұрын
Ok, can you clarify why did not we just do compare each node with everyone and take the min values and add them up? it will be n^2. is it because we want to prevent a cycle?
@sankeerthsirikonda3565
@sankeerthsirikonda3565 2 жыл бұрын
At 15:35, from 2nd node to 1st node we are adding edge as it has min cost of 9, but won't it violate the line if nei not in visit(26th line in code) as 1st node is already in visit set?
@kumarakshay8468
@kumarakshay8468 2 жыл бұрын
2nd node with cost 9 was added to the heap while we were exploring nei from 1st node. And yes like he said same node will be added several times in the heap but with different costs.
@xiaonanwang192
@xiaonanwang192 2 жыл бұрын
Thank you for your video, this is very valuable! There is an optimized Prime's method from Leet code solution. The time complexity can be optimized into O(N^2). Could you talk a little about that?
@AnonymousCoward3000
@AnonymousCoward3000 Жыл бұрын
As others have pointed out in the comment section, you can track the remaining points (instead of the frontier set). In this particular question, the distance to each remaining point needs to be re-evaluated every time a new point is added to the MST. The trick to achieving O(n^2) is to track the next closest point during that re-evaluation, such that getting the next closest remaining point in each iteration is O(1). def minCostConnectPoints(self, points: list[list[int]]) -> int: if not points: return 0 total_dist = 0 # invariant: the last element in this list will have the minimum distance distance_and_points: list[list[int or float, int, int]] = [[float('inf'), p[0], p[1]] for p in points] distance_and_points[-1][0] = 0 while distance_and_points: dist, x, y = distance_and_points.pop() total_dist += dist if not len(distance_and_points): break # update distance of all remaining points min_dist_idx = 0 for i in range(len(distance_and_points)): dist2, x2, y2 = distance_and_points[i] distance_and_points[i][0] = min(dist2, abs(x2 - x) + abs(y2 - y)) if distance_and_points[i][0] < distance_and_points[min_dist_idx][0]: min_dist_idx = i # move the closest point to the end of distance_and_points by swapping distance_and_points[-1], distance_and_points[min_dist_idx] = distance_and_points[min_dist_idx], distance_and_points[-1] return total_dist
@gaaligadu148
@gaaligadu148 2 жыл бұрын
Isn't line 26 redundant though? Since we are already continuing at line 21 if a node is already seen. I just checked and it works just fine when I comment line 26.
@devarshpatel9858
@devarshpatel9858 2 жыл бұрын
I don't think its necessary but it may save some extra while loop cycles.
@toekneema
@toekneema 3 жыл бұрын
Great video! Thank you!
@rayanfadhlaoui
@rayanfadhlaoui Жыл бұрын
As always, thank you !!
@shaanyahoo
@shaanyahoo 3 жыл бұрын
can you cover other algorithms like kruskal, dijkstra etc.
@AsifIqbalR
@AsifIqbalR 3 жыл бұрын
We wantsssss it, we needsssss it. @Neetcode
@clintondannolfo714
@clintondannolfo714 2 жыл бұрын
I did the same thing as the code in this video in JavaScript and it took 2 seconds to run on leetcode, changed it to be like Bellman Ford and it lowered down to 152ms. Bellman ford complexity on this should be runtime O(n^2) and memory O(n). I think the Prim's algorithm as implemented in this video is runtime O(n^2 + n*log n + n^2 * log n) (build adj list, pop heap n times, push to heap n*n times) since it's pushing to the heap n^2 times (in nested for loop). It would be cheaper to just recalculate the distance with every point than pushing to the heap for every element on every iteration. I think proper prims algorithm is meant to be different.
@albertchen5501
@albertchen5501 2 жыл бұрын
Thanks for the tutorial. I’d feel more comfortable with matrix indexing tho.
@asdfasyakitori8514
@asdfasyakitori8514 Жыл бұрын
Great video
@healing1000
@healing1000 2 жыл бұрын
Great video. Isn't the time complexity O(n2 log n2) instead of O(n2 log n)? Can't the heap size reach higher than n
@chrisgao3457
@chrisgao3457 Жыл бұрын
True, but the properties of log means that you can bring down the 2 from the exponent of of the second n^2 and make that the coefficient of the log, or simply 2n^2logn. Then the coefficient gets removed because it does not matter when considering O.
@Notezl
@Notezl 2 жыл бұрын
for a dense graph like this, adjacency matrix will be better.
@joshuakoehler6457
@joshuakoehler6457 2 жыл бұрын
Agreed. Excellent video nonetheless.
@venkatasundararaman
@venkatasundararaman 2 жыл бұрын
We are pushing a neighbor only when not in visit set, then in that case do we have to check again and continue?
@shuvbhowmickbestin
@shuvbhowmickbestin Жыл бұрын
shouldn't we heapify the list first?
@kirillzlobin7135
@kirillzlobin7135 Жыл бұрын
You are the legend
@kirillzlobin7135
@kirillzlobin7135 Жыл бұрын
Please, can you also someday add to your course on your website video on Kosaraju's Algorithm
@CEOofTheHood
@CEOofTheHood 3 жыл бұрын
would doing the calculations in prims be more optimal, if so how would we do it?
@mayankpant5471
@mayankpant5471 8 күн бұрын
The solution is very similar to djikstra.What is the difference between two algo beside name ?
@vardaanbajaj3181
@vardaanbajaj3181 2 жыл бұрын
your channel is a goldmine
@Demo-yc8fb
@Demo-yc8fb 2 жыл бұрын
How can you start at an arbitrary node instead of starting at the node with the min edge that connects to it
@ladydimitrescu1155
@ladydimitrescu1155 Жыл бұрын
Because the first node u select has dist 0 and later u spread out looking for the smallest node contacted to this node with dist 0
@chiraagpala3243
@chiraagpala3243 3 жыл бұрын
you mentioned that there are some other algorithms for this type of problem, will you be doing videos on those anytime as well?
@jonbrockett1249
@jonbrockett1249 2 жыл бұрын
you can use Union Find making use of Kruskal's algorithm for this type of question
@dk20can86
@dk20can86 2 жыл бұрын
How is it n^2 * log(n) and not instead n^2 * log(n^2)? If the heap can have n^2 elements in it, each heap operation is going to be log(n^2), no?
@dk20can86
@dk20can86 2 жыл бұрын
Ah, i just (re-)learned that log(n^2) = 2 * log(n) = O(log(n))
@praize111
@praize111 10 ай бұрын
Hello everyone. Please how can we implement this to an actual question? I have an assignment and went through the video. I understood the first part but have issues implementing it in my assignment. Many thanks
@AnthonyInSanDiego
@AnthonyInSanDiego 2 жыл бұрын
Isn't your solution O(N^2) instead of O(N^2LogN)? I see it as creating the adj list takes O(N^2) then Prim's takes O(NLogN).
@jerrychan3055
@jerrychan3055 10 ай бұрын
for-loop inside a while loop + a heappop = O(n^2logn)
@chien-yuyeh9386
@chien-yuyeh9386 Жыл бұрын
So nice
@surters
@surters 3 жыл бұрын
This looks like an O((E+N) lg N) where E=N^2 so O(N^2 lg N)? isn't there a O(N lg n) solution?
@chenjus
@chenjus 3 жыл бұрын
Don't you need to heapify minH?
@VaibhavChauhan08
@VaibhavChauhan08 3 жыл бұрын
We use heapq.heappush and heapq.heappop functions to push and pop. They take care of ensuring the heap is maintain properly.
@codecodercoding
@codecodercoding Жыл бұрын
How's it different than Djkistra Algo? @neetcode
@prasad9012
@prasad9012 2 жыл бұрын
Sorry for being a stickler but, I couldn't help but notice from a couple of your videos that you write the incorrect spelling of Dijkstra's Algorithm😅
@electric336
@electric336 2 жыл бұрын
Yeah, he also pronounces it wrong.
@yashajitsaria3348
@yashajitsaria3348 Жыл бұрын
can you drop a link to c++ code for this ques?
@pratikmhatre4815
@pratikmhatre4815 Жыл бұрын
The solution is great, however one of the test case fails `points = [[0,0],[1,1],[1,0],[-1,1]]` calculating the edges uses (i+1) in inner loop, which is causing the issue
@itachicodes2506
@itachicodes2506 Жыл бұрын
is this a TSP?
@truegrabbers
@truegrabbers 2 жыл бұрын
wow Thanks
@amol_
@amol_ 11 ай бұрын
JAVA Solution With Custom Min Heap Implementation. intentionally avoided PriorityQueue existing minHeap in Java for learning. record HeapValue(int cost, int node) {} class Solution { public int minCostConnectPoints(int[][] points) { ArrayList heap = new ArrayList(); HashMap map = buildMap(points); HashSet set = new HashSet(); int cost = 0; insert(heap, new HeapValue(0, 0)); while(set.size() < points.length) { HeapValue currentNode = remove(heap); if(set.contains(currentNode.node())) continue; cost += currentNode.cost(); set.add(currentNode.node()); if(!map.containsKey(currentNode.node())) continue; for(HeapValue neighbor : map.get(currentNode.node())) { if(!set.contains(neighbor.node())) { insert(heap, neighbor); } } } return cost; } private HeapValue remove(ArrayList heap) { HeapValue min = heap.get(0); heap.set(0, heap.get(heap.size() - 1)); heap.remove(heap.size() - 1); heapify(heap, 0); return min; } private void insert(ArrayList heap, HeapValue node) { heap.add(node); int length = heap.size() - 1; while((length - 1) / 2 >= 0 && heap.get((length - 1) / 2).cost() > node.cost()) { HeapValue tmp = heap.get((length - 1) / 2); heap.set((length - 1) / 2, node); heap.set(length, tmp); length = (length - 1) / 2; } } private void heapify(ArrayList heap, int node) { if(heap.size() == 0) return; int smaller = node; int leftChild = 2 * node + 1; int rightChild = 2 * node + 2; if(leftChild < heap.size() && heap.get(leftChild).cost() < heap.get(smaller).cost()) { smaller = leftChild; } if(rightChild < heap.size() && heap.get(rightChild).cost() < heap.get(smaller).cost()) { smaller = rightChild; } if(smaller != node) { HeapValue tmp = heap.get(node); heap.set(node, heap.get(smaller)); heap.set(smaller, tmp); heapify(heap, smaller); } } private HashMap buildMap(int[][] points) { HashMap map = new HashMap(); for(int i = 0; i < points.length; i++) { int[] currentPoint = points[i]; for(int j = i + 1; j < points.length; j++) { int[] nextPoint = points[j]; int distance = Math.abs(currentPoint[0] - nextPoint[0]) + Math.abs(currentPoint[1] - nextPoint[1]); if(map.containsKey(i)) { map.get(i).add(new HeapValue(distance, j)); } else { ArrayList list = new ArrayList(); list.add(new HeapValue(distance, j)); map.put(i, list); } if(map.containsKey(j)) { map.get(j).add(new HeapValue(distance, i)); } else { ArrayList list = new ArrayList(); list.add(new HeapValue(distance, i)); map.put(j, list); } } } return map; } }
@sellygobeze7173
@sellygobeze7173 2 жыл бұрын
🐐
@adiletyeraly3663
@adiletyeraly3663 Жыл бұрын
❤❤
@ferdyanggara4440
@ferdyanggara4440 3 жыл бұрын
popping min is O(1) operaton not a logn
@brianevans4975
@brianevans4975 3 жыл бұрын
Reading the min is O(1), but popping is O(logn). When popping, the min element is removed, which means the heap must be reordered.
@lemonke8132
@lemonke8132 2 жыл бұрын
it's pronounced dike-struh lmao 💀
@sonicjetson6253
@sonicjetson6253 2 жыл бұрын
Sorry buddy you use a lot of words but still not clear. A lot of the Indian youtubers explain much more clearly.
@Kuo-HaoLai
@Kuo-HaoLai 2 жыл бұрын
So you can go to those Indian's video, hater.
@joydeepdas8632
@joydeepdas8632 8 ай бұрын
Yeah true, All those didi and bhaiya of yours true..... Those cancers of youtube, You are right..😊
Making an Algorithm Faster
30:08
NeetCodeIO
Рет қаралды 191 М.
3.5 Prims and Kruskals Algorithms - Greedy Method
20:12
Abdul Bari
Рет қаралды 3 МЛН
The Lost World: Living Room Edition
0:46
Daniel LaBelle
Рет қаралды 27 МЛН
Who is More Stupid? #tiktok #sigmagirl #funny
0:27
CRAZY GREAPA
Рет қаралды 10 МЛН
Network Delay Time - Dijkstra's algorithm - Leetcode 743
19:48
Prim's Minimum Spanning Tree Algorithm | Graph Theory
14:53
WilliamFiset
Рет қаралды 129 М.
Understanding B-Trees: The Data Structure Behind Modern Databases
12:39
12. Greedy Algorithms: Minimum Spanning Tree
1:22:10
MIT OpenCourseWare
Рет қаралды 230 М.
LeetCode was HARD until I Learned these 15 Patterns
13:00
Ashish Pratap Singh
Рет қаралды 708 М.
Dynamic Programming isn't too hard. You just don't know what it is.
22:31
DecodingIntuition
Рет қаралды 234 М.