Sujeet Singh, very good explanation. I was expecting we will get fourier transform of Sampling Function, Sa (t*tau/2) 2*pi/tau * rect (omega/tau)
@gannonmalakai97063 жыл бұрын
i realize Im quite randomly asking but do anyone know a good website to watch newly released series online ?
@zaynarcher97933 жыл бұрын
@Gannon Malakai Flixportal :P
@gannonmalakai97063 жыл бұрын
@Zayn Archer thanks, I signed up and it seems like a nice service :D I appreciate it !!
@zaynarcher97933 жыл бұрын
@Gannon Malakai no problem :D
@AshishKumar-bs7um7 жыл бұрын
Conceptual & short sweet
@Evolutsner4 жыл бұрын
Sir, I could notice a small mistake here. In the triangular waveform representation, y(t) = A rect(t/tou). To get total area = A. The amplitude of y(t) for -tou/2 to tou/2 should be A/tou. But you have taken only A. This will accordingly change the FT as A sinc (w.tou/2) [ not A.tou sinc(w.tou/2). In your previous lecture for derivation of FT of rectangular and triangular signals too, same thing you have assumed. Please check it and let me know if I am wrong. Thanks
@manas6185 Жыл бұрын
No problem bro. Sir not consider total area A. If you want then you have said that is right. Range of t is -tou/2 to +tou/2 , then alway area*sam(w*tou/2 ) always come.
@varshithkorukonda59265 жыл бұрын
Sir ur simply superb👏👏
@GauravGupta-pb8mk4 жыл бұрын
Thank you sir
@oye_ujjwal6 жыл бұрын
why you use t=-w at 2:26 playtime,please explain
@yashverma82664 жыл бұрын
refer duality property
@RomanReigns-tg5qm5 жыл бұрын
how is this function absolutely integrable because at the starting you said that we could use the formula?
@mazensayed32504 жыл бұрын
it's an integrable function as if you used parsavel's equation you can prove that integration of sa(wt/2) squared from -inf to +inf = 1/t