Neural Recommender Systems

  Рет қаралды 14,113

dataroots

dataroots

Күн бұрын

Пікірлер: 21
@farhanuddinfazaluddinkazi7198
@farhanuddinfazaluddinkazi7198 2 жыл бұрын
Thank you, loved the explaination, you covered quite a lot in very less time and also very clearly
@dataroots
@dataroots 2 жыл бұрын
Glad you liked it
@Lelouchvv
@Lelouchvv Жыл бұрын
Thanks… 13:14 I have a question that why do you use precision, recall…. metrics (metrics for classification)? And how does model calculate that, because its not discrete value. I am a newbie
@spicytuna08
@spicytuna08 2 жыл бұрын
thanks. when you test, you are using data from training. i am referring to this line: long_test = wide_to_long( ) the parameter should be data['test'].. please correct me if i am wrong,
@spicytuna08
@spicytuna08 2 жыл бұрын
thanks. i see a problem with calling make_tf_dataset() just once for training. this function returns a size of 512 in tensor type. you are using this data just once for training. i think you need to put this into a loop. or make the batch size bigger. am i missing out in understanding?
@efesencan8079
@efesencan8079 2 жыл бұрын
My second question is, if interactions were not encoded as binary, but encoded as the actual ratings (explicit feedback rather implicit feedback), does your provided code still produce meaningful ncf_predcitons?
@murilo-cunha
@murilo-cunha 2 жыл бұрын
I believe it should (it's been a while). The only thing you want to modify is to normalize the actual ratings between 0 and 1.
@efesencan8079
@efesencan8079 2 жыл бұрын
I did not really understand what these ncf_predictions means for the prediction. Does higher ncf_prediction value for specific (user_id,item_id) means they should be recommended to the user? Then, during the recommendation phase, for every (user_id,item_id) pair, should I recommend the item_id with the highest ncf value to that user?
@murilo-cunha
@murilo-cunha 2 жыл бұрын
Yes, the highest predicted values that the user has not already seen/bought should be recommended. The ncf_predictions is basically the models' "guess" of whether you'd buy/watch by yourself (and we approximate "watched" = "liked").
@efesencan8079
@efesencan8079 2 жыл бұрын
@@murilo-cunha Thank you for the answers. Do you also have any recommendations to reduce the training time of the NCF model. I currently have 138k users and 1470 items. It takes more than days to finish the training process.
@murilo-cunha
@murilo-cunha 2 жыл бұрын
@@efesencan8079 Hmm nothing in particular to this. You can always reduce the model size (layers, embedding size, etc.), scale your training up (get a more powerful machine - GPUs, etc.) or scale out (distributed training with SparkML or something). It's a bit hard to say without more specific info. Hope this helps!
@chetouanethiziri3831
@chetouanethiziri3831 2 жыл бұрын
hi @Efe Sencan can you give me the link to your dataset please, i am having trouble finding one, i am also working on social media users.
@arvindchavan9759
@arvindchavan9759 3 жыл бұрын
thanks.. I have question on userid information... is it possible to provide user related information as input to model?
@murilo-cunha
@murilo-cunha 3 жыл бұрын
Yes you can. But then you are moving towards a more hybrid approach (as opposed to the collaborative filtering approach in the video).
@fatmadehbi2946
@fatmadehbi2946 3 жыл бұрын
hello,thanks for this video if u can pls send me the code plz
@murilo-cunha
@murilo-cunha 3 жыл бұрын
There are some links in the description. For google colab: colab.research.google.com/github/murilo-cunha/inteligencia-superficial/blob/master/_notebooks/2020-09-11-neural_collaborative_filter.ipynb
@fatmadehbi2946
@fatmadehbi2946 3 жыл бұрын
@@murilo-cunha thanks a lot
@spicytuna08
@spicytuna08 2 жыл бұрын
thanks when you run a test, the results do not look good. for those with 'interaction' equal to 1, the prediction should be close to 1. but this is not the case.
@Bawaromerali
@Bawaromerali 3 жыл бұрын
thanks , but the problem with these kind of videos is , you are talking to an expert guy who know all these things, but someone who does not know these things will not understand anything ! i hope in future videos be more detailed and slowly explain each steps not only read slides !
@jagicyooo2007
@jagicyooo2007 3 жыл бұрын
no one can hold your hands through everything; you need to do some research on ur own to get a feel for the context of this domain. I'd suggest you to do that first and then come back to re-watch the video.
@Bawaromerali
@Bawaromerali 3 жыл бұрын
@@jagicyooo2007 Thanks for replay , i learnt and already built a recommender system and i understood these kind of videos is wasting time ! people should learn how to implement it not just short videos and highlights .
Recommender Systems: Basics, Types, and Design Consideration
58:46
Data Science Dojo
Рет қаралды 33 М.
Watching Neural Networks Learn
25:28
Emergent Garden
Рет қаралды 1,4 МЛН
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 413 М.
How does Netflix recommend movies? Matrix Factorization
32:46
Serrano.Academy
Рет қаралды 356 М.
47th #ebaytechtalk: Deep Learning for Recommender Systems
1:04:12
eBay Tech Berlin
Рет қаралды 15 М.
I Built a Neural Network from Scratch
9:15
Green Code
Рет қаралды 492 М.
The moment we stopped understanding AI [AlexNet]
17:38
Welch Labs
Рет қаралды 1,5 МЛН
Deep Learning for Recommender Systems (Nick Pentreath)
31:54
Databricks
Рет қаралды 31 М.
Visualizing transformers and attention | Talk for TNG Big Tech Day '24
57:45
Understanding AI from Scratch - Neural Networks Course
3:44:18
freeCodeCamp.org
Рет қаралды 495 М.
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН