Introduction to NLP | Word Embeddings & Word2Vec Model

  Рет қаралды 38,480

Normalized Nerd

Normalized Nerd

Күн бұрын

Пікірлер: 64
@harshpal1457
@harshpal1457 2 жыл бұрын
The most underrated channel for Machine learning
@sreedharsree361
@sreedharsree361 4 жыл бұрын
The best.. you elucidated this topic with charm !! Thanks Sujan
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Glad it helped you...Keep supporting ❤️
@magelauditore333
@magelauditore333 4 жыл бұрын
Commenting after 1/3rd part f the video. It is really very clear. Wait up and continue this. You will get huge lots of subs. Keep it up
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thank you so much...it means a lot :D
@TechResearch05
@TechResearch05 4 жыл бұрын
Very clear description. I was struggling to understand it but your video was very simple and provided required information
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
I'm glad to hear that. Keep supporting. ❤️
@ZohairAhmed007
@ZohairAhmed007 2 жыл бұрын
Thanks, that is one of the best explanations, I Understand a lot.
@shivanineeli5392
@shivanineeli5392 3 жыл бұрын
please continue making NLP videos , please we want more and more if possible entire AI we would love u hear from you!
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Keep supporting!
@debjyotibanerjee7750
@debjyotibanerjee7750 4 жыл бұрын
Really good explanation, now understood the concept completely!!!!!!!
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Glad this video was helpful. Keep supporting man!
@manikant1990
@manikant1990 2 жыл бұрын
Beautiful Explanation, I love it!! 👍👍
@NormalizedNerd
@NormalizedNerd 2 жыл бұрын
Thank you! 😃
@swagatmishra9350
@swagatmishra9350 4 жыл бұрын
Really awsum vdo.... So easy and clear explanation... Loved it.. Please make more vdos.. Thanks a lot..
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
I'm glad that you loved it. More videos are coming :D
@pratibhagoudar6817
@pratibhagoudar6817 3 жыл бұрын
Thanks bruhhh🤍.... it's more clear dan compare regular classes # nlp
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Great to hear that :D
@mastercomputersciencewitha5985
@mastercomputersciencewitha5985 3 жыл бұрын
Very Nice explaination sir. Thank you so much sir.
@dipannita7436
@dipannita7436 4 жыл бұрын
one of the best explanation
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thanks a lot!
@jjtalks6797
@jjtalks6797 2 жыл бұрын
Super explanation
@vaidehideshpande1489
@vaidehideshpande1489 3 жыл бұрын
great explanation!!
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Thank you!
@rajivs9287
@rajivs9287 3 жыл бұрын
awesome video
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
:D
@spartacuspolok6624
@spartacuspolok6624 3 жыл бұрын
It was really helpful.
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Thanks!
@meetsavsani9739
@meetsavsani9739 4 жыл бұрын
Great work buddy!
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thanks a lot!
@aniketchhabra8912
@aniketchhabra8912 3 жыл бұрын
This is amazing!!
@edwardrouth
@edwardrouth 4 жыл бұрын
Hi, This could sound bit naive but i just want to know how did you figure out the parameter that you are passing to "api.load()" which is "word2vec-google-news-300". I mean there must be a list of API from where you got this right ? I googled it but i found there are just links and its bit confusing too. Thanks.
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
We were all naive once so don't worry. I'm using gensim api. So you can find the correct parameters from their documentation/repo. Here you can find a file called list.json => github.com/RaRe-Technologies/gensim-data You can also find the list of the models from the GitHub readme.
@tobiascornille
@tobiascornille 4 жыл бұрын
You said Skipgram predicts the context words from the target word, but then later you just compute the sigmoid (so not a softmax) to know if one pair of a target word and a context word is correct. I don't really see how this is "predicting" the context words. Is there something else going on? I'm very confused since it seems like every explanation is saying something different...
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Because, we are taking one context (or random) word at a time and pair it with the target word. If we get context-target pair then class is 1. If we get random-target pair then class is 0.
@intelligentinvesto9060
@intelligentinvesto9060 3 жыл бұрын
What is the loss function used?
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
- log[P(w_target | w_context)
@coxixx
@coxixx 4 жыл бұрын
please make a video about how back propagation works in skip gram.
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Backpropagation in the word2vec model is really hard to explain in a single video however, I found a great resource to learn about it. www.claudiobellei.com/2018/01/06/backprop-word2vec/ I hope one can understand this article after watching the video.
@rexwan561
@rexwan561 3 жыл бұрын
intro video remind me its wednesday my dudddde
@hemangshrimali6308
@hemangshrimali6308 3 жыл бұрын
Nice video
@ccuuttww
@ccuuttww 3 жыл бұрын
I want to ask a question is it all vector of words in same length? Because I have an idea if we use DNA sequence(of course not in same length) instead of just words can we train a model to get a better classify result?
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
The length of each word vector is same. Because the idea behind word2vec was to represent every word using vectors of fixed length.
@ccuuttww
@ccuuttww 3 жыл бұрын
@@NormalizedNerd can we fit DNA sequence into it? I know we can fit image into it
@md.shafaatjamilrokon8587
@md.shafaatjamilrokon8587 2 жыл бұрын
Thanks man
@ThoTran-oi3xi
@ThoTran-oi3xi 3 жыл бұрын
Thank you so much for your video, can you turn on subtitles for this video? Because I'm not from England, I can't hear you clearly but the video has no subtitles
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Currently, I don't have the resources to put subtitles on every video. However, I'll try to do it for some videos.
@r_pydatascience
@r_pydatascience 3 жыл бұрын
Nice video.Does word2vec represent medical vocabularies? I have a medically text corpus that has about 100000 tokens. What do you think I should do?
@magelauditore333
@magelauditore333 4 жыл бұрын
Just Awesome.
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thanks again!
@krishcp7718
@krishcp7718 3 жыл бұрын
Hi, Your videos on NLP are great. For , most_similar(positive = ['boy', 'queen'], negative='girl', topn=1) I am getting : [('teenage_girl', 0.35459333658218384)]. What could be happening here? Krish
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Strange!...that shouldn't happen. Please check your code. You can download my notebook and run it. The link is in the description. Edit: Ohh, I get it. You used "girl" instead of ["girl"]. Interesting...I didn't know it behaves like this when just a string is passed :o
@debjyotibanerjee7750
@debjyotibanerjee7750 4 жыл бұрын
Bro just tell me one thing, while creating vectors of the words, do we need to remove stopwords, and lemmatize our text data, cause I believe if we do the mentioned text pre-processing steps, then may be the word2vec model may be not able to understand the context, and the training will not happen properly. If you could say something, that would help me a lot in my project.
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Great question. TBH it depends on the project you are working on. Google's Word2Vec doesn't implement lemmatization (also removes very few stop words) so if you are planning to use that then don't lemmatize. But if you are gonna train your word2vec then you can do all sorts of preprocessing. A rule of thumb is if your data size is very large then don't lemmatize. For stop words I'd say remove only the ones that doesn't change the context very much (like a, an, etc.)
@debjyotibanerjee7750
@debjyotibanerjee7750 4 жыл бұрын
@@NormalizedNerd okay.. Thank you for the information bro. Are you there on LinkedIn?
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
yeah...here's my profile www.linkedin.com/in/sujandutta99/
@gulsanbor
@gulsanbor 4 жыл бұрын
excellent
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thank you...keep supporting
@gulsanbor
@gulsanbor 4 жыл бұрын
@@NormalizedNerd sure . Connect with me in Linkedin if possible www.linkedin.com/in/gulsan19/
@coxixx
@coxixx 4 жыл бұрын
awesome
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thank you :)
@Hephasto
@Hephasto 3 жыл бұрын
Shouldn’t it be grammatically correct I love making videos instead of to make
Introduction to NLP | GloVe Model Explained
23:15
Normalized Nerd
Рет қаралды 69 М.
Introduction to NLP | Bag of Words Model
22:24
Normalized Nerd
Рет қаралды 34 М.
번쩍번쩍 거리는 입
0:32
승비니 Seungbini
Рет қаралды 182 МЛН
"Идеальное" преступление
0:39
Кик Брейнс
Рет қаралды 1,4 МЛН
Word Embedding and Word2Vec, Clearly Explained!!!
16:12
StatQuest with Josh Starmer
Рет қаралды 358 М.
Word Embeddings
14:28
macheads101
Рет қаралды 157 М.
Text Summarization & Keyword Extraction | Introduction to NLP
14:59
Normalized Nerd
Рет қаралды 50 М.
Word2Vec - Skipgram and CBOW
7:21
The Semicolon
Рет қаралды 198 М.
A Complete Overview of Word Embeddings
17:17
AssemblyAI
Рет қаралды 115 М.
12.1: What is word2vec? - Programming with Text
10:20
The Coding Train
Рет қаралды 234 М.
Understanding Word2Vec
17:52
Jordan Boyd-Graber
Рет қаралды 78 М.
Random Forest Algorithm Clearly Explained!
8:01
Normalized Nerd
Рет қаралды 667 М.
NLP for Developers: Word Embeddings | Rasa
6:37
Rasa
Рет қаралды 44 М.