>:C Also DoDecaD. Made Another Stream And I Think He Blocked Me Because My Messages Disappear When I Leave And Reenter So Imma Use My Alt Accont On Chatting
@DatTrumpetGirl6 ай бұрын
@@KijobalAndKijobol6754🤯 I don’t think a timeout was a block..
@KijobalAndKijobol67546 ай бұрын
@@DatTrumpetGirl im not sure if that was a timeout can you ask him if he blocked me or not? (when the stream is ready)
@DatTrumpetGirl6 ай бұрын
@@KijobalAndKijobol6754 ur 3rd acc isn’t blocked (also tell them you won’t do the “eating corpse” which is why you got T/O’d)
@KijobalAndKijobol67546 ай бұрын
@@DatTrumpetGirl ik ill try to see if that works or not
@thorinturambar3 ай бұрын
1 million centillions hyperal ♾️ Absolute infinity Nęvēr
@GonzaloGomezXD8076 ай бұрын
no i missed it
@nb_26xd4 ай бұрын
You forgot “gap” after the Cardinal (absolute infinity)
@elmanrayyan4 ай бұрын
W man 🍷🗿
@FMN20244 ай бұрын
she is a girl
@CecileCamacho-d4l2 күн бұрын
Beautiful stars😊😊😊😊
@FMN20244 ай бұрын
so you can make saying barcelona in duolingo part 8
@ThePYCGOficial6 ай бұрын
wut is da font and how did u made in square
@KijobalAndKijobol67546 ай бұрын
SofiaPro Made It Square In Kinemaster
@2048_Tile-e2t4 ай бұрын
@@KijobalAndKijobol6754 check the font
@DatPurpleBubblegum6 ай бұрын
*-IT'S MY 14TH BIRTHDAY-*
@KijobalAndKijobol67546 ай бұрын
Happy Birthday!
@MC-6306 ай бұрын
Finally a decent video
@Succativiplex6 ай бұрын
Why the F every time I go TO THIS CHANNEL someone tries to eat a 1, a 2, a 3,4,.
ok lemme get this right ω // First Transfinite Ordinal ω+1 ω+2 ω+3 ω2 ω2+1 ω2+2 … ω^2 ω^ω // Linear Array Ordinal ω^ω^ω sup{A_n=ω^^n}=ε_0 // Small Cantor Ordinal ε_0+1 ε_0+ω (ε_0)*2 ε_0^2 ε_0^ω Using Madore‘s Ordinal Collapsing Function Next ψ(0)^ψ(0) ψ(0)^^3 ψ(0)^^3|ω ψ(1) ψ(2) ψ(ω) ψ(ψ(0)) ψ(ψ(ψ(0))) ψ(Ω) // Cantor Ordinal ψ(Ω^2) // Large Cantor Ordinal ψ(Ω^3)(Phi Nought in this video) ψ(Ω^ω) // Hyper Cantor Ordinal ψ(Ω^Ω) // Feferman-Schutte Ordinal Using Veblen φ notation next φ(1,0,1) φ(1,0,2) φ(1,1,0) φ(1,2,0) φ(2,0,0) φ(ω,0,0) φ(φ(1,0,0),0,0) φ(1,0,0,0) // Ackermann Ordinal φ(1@4) φ(1@5) φ(1@ω) // Small Veblen Ordinal φ(ω@ω) φ(1@ω+1) φ(1@φ(1,0)) φ(1@φ(1@ω)) φ(1@φ(1@φ(1@ω))) a=φ(1@a) which is ψ(Ω^Ω^Ω) // Large Veblen Ordinal ψ(Ω^Ω^Ω^ω) // Extended Small Veblen Ordinal ψ(Ω^^4) // Extended Large Veblen Ordinal ψ(ψ_1(0)) Bachmann-Howard Ordinal and then bunch of ordinals and then the uncomputables like ω_1^CK and then ordinals and then the uncountables like ω_1 and then after a ton you only gets to I and not going this fast