Great videos on these topics I have ever found on youtube. Keep updating new videos please and you did a really good job.
@hekarluzir79553 жыл бұрын
The two methods that you presented in step-by-step manner were easy to understand. Excellent videos indeed. Hope to see more great videos on numerical simulations using MATLAB. All the best in your thesis bro and good luck.
@abolfazlmahmoodpoor_3 жыл бұрын
Thanks, will do!
@AJ-et3vf2 жыл бұрын
Great video sir. Thank you!
@ghufranullahkhan74792 жыл бұрын
I am working on phase field model for concrete. My professor has done all the coding for implementing it. I will be greatful if you make a video on finite element implementation of phase field model using iterative technique.
@priyeshpandey1003 жыл бұрын
its not just laplace ..its u that help me to do it ..
@abolfazlmahmoodpoor_3 жыл бұрын
Glad it helped
@cheikhbrahimabed43193 жыл бұрын
Thank your for this course. Very helpful. In order to speed up the solution of 2D Laplace equation, is there any other faster method than FDM? Can we use POD-Galerkin method to Laplace equation?
@abolfazlmahmoodpoor_3 жыл бұрын
Glad it was helpful. It is possible to use finite element method for solution of Laplace equation but honestly I don't know is it faster than FDM (inverse matrix) or not. About POD Galerkin method it is usually used for convection-diffusion equation I didn't use this method at all!
@cheikhbrahimabed43193 жыл бұрын
@@abolfazlmahmoodpoor_ I think POD-Galerkin is for all PDE's? but i don't know if we can use it for steady PDE's There is another one called "Reduced Basis Methods'' but i didn't use it at all
@shadowmonarch31552 жыл бұрын
@@abolfazlmahmoodpoor_ how can i right in code if my right boundary condition is if x tends to infinity then V=0?
@weibinchen48073 жыл бұрын
Which one is better? Iterative or inverse matrix ? I guess depending on the stability and the problem of interest? Thanks!
@abolfazlmahmoodpoor_3 жыл бұрын
iterative method is simple in coding but it's slow in comparison to inverse matrix method, on the other hand inverse matrix is faster and harder in coding. Moreover you can adjust the error in iterative method and stop calculation at desired error (number of iteration) but inverse matrix method's error is fixed.
@weibinchen48073 жыл бұрын
@@abolfazlmahmoodpoor_ thank you very much for the explanation! Very helpful!
@fatihbaykal51473 жыл бұрын
Excellent explanations ! Thank you.
@abolfazlmahmoodpoor_3 жыл бұрын
Glad it was helpful!
@muhammadaslanimoghanloo50143 жыл бұрын
Many thanks, Abolfazl for your great video, I just have a short question, in the Neumann BC how do we define the corners?
@abolfazlmahmoodpoor_3 жыл бұрын
Corners are defined by either vertical or horizontal boundary.
@muhammadaslanimoghanloo50143 жыл бұрын
@@abolfazlmahmoodpoor_ you mean we can consider an imaginary point beyond the scheme and use it's value to calculate the corner value?
@abolfazlmahmoodpoor_3 жыл бұрын
@@muhammadaslanimoghanloo5014 No, I mean that the value of the function at the boundaries are known, the corners are the cross section of two boundaries, vertical and horizontal, therefore you can easily consider them by either vertical or horizontal boundary.
@nihedtsouli26192 жыл бұрын
Excellent video Please I need help to result a diffusion-convection equation using a 2D grid with FORTRAN
@throine3 жыл бұрын
What if our boundary conditions are inside the mesh grid? Do we have to modify the code?
@abolfazlmahmoodpoor_3 жыл бұрын
definitely, the code and analytical solution is for boundary condition in the sides of mesh, any other boundary inside geometry changes the results.
@ndukamoses84753 жыл бұрын
Thanks so much sir for this great video. But my problem is; how do I implement the Neumann boundary conditions on one, two or three sides of the Laplace equation using finite difference method?
@abolfazlmahmoodpoor_3 жыл бұрын
I received your email. If following explanation is not enough let me know using the email, it is easy, just using the definition of first order derivative. We used it a lot in the videos, If you use it you will see that one node after boundary the value of function at that point is given by the condition that imposed by derivate (an example: df/dx = a -> f(1) - f(0)= a*dx --> f(1)=a*dx + f(0) so the value of function is known in either node number 0 and node number 1 and you should just start calculation from node number 2 )
@ndukamoses84753 жыл бұрын
@@abolfazlmahmoodpoor_ Thank you so much Sir. God bless you Dr.
@SashaPrival29 күн бұрын
Neumann conditions?
@shadowmonarch31552 жыл бұрын
how can i right in code if my right boundary condition is if x tends to infinity then V=0?
@weibinchen48073 жыл бұрын
Thanks so much!
@ahmedzaki31193 жыл бұрын
hey dear abo fazl I am waiting for new videos
@abolfazlmahmoodpoor_3 жыл бұрын
Hi Ahmed, Sorry for such a silence in my channel, I am busy with my thesis these days. I hope I can upload another video soon
@ahmedzaki31193 жыл бұрын
Good luck
@abolfazlmahmoodpoor_3 жыл бұрын
Thank you so much
@harshitsharma79633 жыл бұрын
thank you so much sir
@vishalchhabra70163 жыл бұрын
sir for working on matlab which laptop should be good..?
@abolfazlmahmoodpoor_3 жыл бұрын
My laptop is Core i5 with 6 GB RAM, it works well and more than enough for Matlab program.
@vishalchhabra70163 жыл бұрын
@@abolfazlmahmoodpoor_ thankyou so much sir.
@vishalchhabra70163 жыл бұрын
@@abolfazlmahmoodpoor_ sir how to apply finite differential method on mixed condition with Laplace equation. means after plotting grid points and making equations what is the approach
@abolfazlmahmoodpoor_3 жыл бұрын
@@vishalchhabra7016 What do you mean by mixed condition?
@vishalchhabra70163 жыл бұрын
@@abolfazlmahmoodpoor_condition of Drichlet problem and neumann problem are present together in which
@fatitraka37223 жыл бұрын
Merci monsieur pour toutes ces informations. je suis à la recherche la résolution équation de chaleur par méthode éléments finis et différence finie. De la même manière d'explication.😊
@abolfazlmahmoodpoor_3 жыл бұрын
Here you can find solution of 1D heat equation using finite difference method kzbin.info/www/bejne/aGOlkpuCqa5mfLM