Real-Time Object Detection in 10 Lines of Python Code on Jetson Nano

  Рет қаралды 546,735

NVIDIA Developer

NVIDIA Developer

Күн бұрын

Пікірлер: 137
@talhakhan3010
@talhakhan3010 4 жыл бұрын
Actual tutorial start at 12:25
@TrevorLoftus
@TrevorLoftus 4 жыл бұрын
bless you
@pathikghugare
@pathikghugare 4 жыл бұрын
Thanks 😂😂
@dellavita3463
@dellavita3463 8 ай бұрын
A real Life saver
@SomaliCoastguard
@SomaliCoastguard 4 жыл бұрын
Very informative video that has me thinking about using a Nano as the centre of an intelligent alarm system.
@kwang-jebaeg2460
@kwang-jebaeg2460 4 жыл бұрын
Oh my god .. Please give us your excellent explanations more and more
@rodrigoruiz4345
@rodrigoruiz4345 8 ай бұрын
Thanks for sharing!! I was wondering if any type of camera could be recommended for this application.
@kevin_delaney
@kevin_delaney 4 жыл бұрын
A bit!? 😆 my nano is running on an SSD thanks to JetsonHacks and it's actively cooled....you sped that up more than "a bit" 😂 It also took just as long the first time I ran detectnet-console. That worked flawlessly. You should make a video for Yolov3 as well (with cuda and/or opencv), because with that you have like everything covered haha. I'm so hooked!:) thank you!
@SamAndHenryPlaz
@SamAndHenryPlaz 4 жыл бұрын
I used an old Canakit usb wifi and a 16gig microsd (should probably have used a 32gig) card when starting with the Nano last week. I think I waited 2 hours for the default models to download. Plus I didnt have enough space to download PyTorch Then this weekend I added a hardwire ethernet and a usb hard drive and did "pivot the root" from jetsonhacks. Now my Nano life is so much better since it only took < 10min to download all 2.2gig of the models.
@tacpreppers4906
@tacpreppers4906 4 жыл бұрын
just pulled the trigger on a nano, brilliant!
@도전100-h8d
@도전100-h8d 4 жыл бұрын
Very good information and lecture. Thanks for your effort for this video and your job!
@AWildNoodle
@AWildNoodle 4 жыл бұрын
Really great teacher! I cant wait to get my hands on mine!
@drone_video9849
@drone_video9849 4 жыл бұрын
22:55 it would have been scary / awesome if it detected itself - could have been self-aware...
@israelip
@israelip 4 жыл бұрын
If you train it for that, it will.
@VndNvwYvvSvv
@VndNvwYvvSvv 9 ай бұрын
I don't think you have any idea how computers work, let alone GANs or CNNs.
@איילהורוביץ
@איילהורוביץ 4 жыл бұрын
Super cool!! Is there some easy way to use your project and fine tune (probably by transfer learning) the detection for specific classes?
@Jeonghunlee911
@Jeonghunlee911 4 жыл бұрын
Thanks for sharing information with us, It's easy to follow this tutorial.
@drtristanbehrens
@drtristanbehrens 4 жыл бұрын
This is an EXCELLENT tutorial! Thanks for sharing!
@bvs7415
@bvs7415 7 ай бұрын
Which jetson nano is best for OpenCv projects??? Jetson nano Orin or any other please reply....
@ApolloVerified
@ApolloVerified 7 ай бұрын
I would recommend using Orin as the former jetson nano doesn't get software updates anymore
@adrianoalecrim
@adrianoalecrim 4 жыл бұрын
How to run camera ip?
@TheRecep27
@TheRecep27 4 ай бұрын
Hello . Can the Yolov7 model run after making these settings? Thank you very much.
@randommm-light
@randommm-light 4 жыл бұрын
Very nice demo. Look forwards to more. I’m curious to make a very minimal bench to play with all this.. what is the essential budget Jetson starter kit? What do I need alongside to make it all happen easily.. starting from scratch and building up.. thx for good work!
@kevindelnoye9641
@kevindelnoye9641 4 жыл бұрын
Monitor, keyboard, mouse , Ethernet cable, micro SD with enough memory I recommend 64gb but 32 should be comfortable aswell. You can skip the monitor if you decide to work headless although sometimes a setup with monitor is really useful for displaying results
@randommm-light
@randommm-light 4 жыл бұрын
Kevin Delnoye I get ya on what the jetson needs hooked to it.. I’m all for good monitor, etc.. but what do I need on bench top to get THAT configured and rolling.. Assume starting from iPad.. I need a small ecosystem or can I work w Nano itself and roll uphill..
@kevindelnoye9641
@kevindelnoye9641 4 жыл бұрын
@@randommm-light an pc/laptop to flash the SD card with jetpack. After that I don't think you need anything else, optionally a USB camera for testing models
@sohailawan77
@sohailawan77 4 жыл бұрын
Please upload tutorial about how to count objects or vehicles in a real time using NVIDIA jetson nano.
@marcinkovalevskij5820
@marcinkovalevskij5820 4 жыл бұрын
10 lines of python code that you can see, + 10k of c++ code that you can't see
@maksimmuruev423
@maksimmuruev423 4 жыл бұрын
Of course, python has nothing to do with this. Python is slow as hell, cant process video itself especially on small devices. Such example can be with JS or whatever language has wrapper.
@rockatang2189
@rockatang2189 7 ай бұрын
Hi. I followed the steps until make. When I used "make" command, it says "No targets specified and no makefile found." How could I fix this?
@akshatjaimini8254
@akshatjaimini8254 6 ай бұрын
Is there any way I can combine these with the jetbot repo?
@satyamrout1400
@satyamrout1400 4 жыл бұрын
Sir can we use this model to recognize the faces accurately of atleast 60 people at a time? If yes do make a vid on it.....i be very much helpful n yes again an awsm vid....
@VndNvwYvvSvv
@VndNvwYvvSvv 9 ай бұрын
No, that's insane.
@vvisin13
@vvisin13 6 ай бұрын
If I am in a virtual environment using python 3.11, is there a way to install jetson? I am working with a library that does not work in python 3.8
@maikdean8490
@maikdean8490 4 жыл бұрын
What’s the maximum megapixel camera it can handle please reply thanks 🙏
@ZeyadAhmed-om3rs
@ZeyadAhmed-om3rs 7 ай бұрын
how can i take the object detection results to use it in and Arduino ide functions?
@braydenmoore3101
@braydenmoore3101 Жыл бұрын
Awesome tutorial thanks man
@Deepsim
@Deepsim Жыл бұрын
Thank you for this great tutorial! But I was wondering how to use my own trained model, for example named "my-ssd-mobilenet"?
@akasitchantanit4362
@akasitchantanit4362 Жыл бұрын
what is Model of camera for test in this lab ?
@mychevysparkevdidntcatchfi1489
@mychevysparkevdidntcatchfi1489 4 жыл бұрын
Would you change the screen resolution to 640x480 or even to 320x240? I can't read any of the text when your screen is so large.
@dracleirbag5838
@dracleirbag5838 4 жыл бұрын
Using your example where are the files saved? I should delete old files right?
@amirarjmand5295
@amirarjmand5295 4 жыл бұрын
does have NVIDIA any industrial gpu?
@shubhamcyborg9218
@shubhamcyborg9218 4 жыл бұрын
Make tutorial to train custom datasets and also tell how to remove other datasets to increase fps !!
@dusty-nv
@dusty-nv 4 жыл бұрын
Here is a tutorial for training custom image classifiers: github.com/dusty-nv/jetson-inference/blob/master/docs/pytorch-transfer-learning.md For tutorials on re-training custom object detection model, see this post: devtalk.nvidia.com/default/topic/1070225/jetson-nano/digits-or-somthing-else/post/5421938/#5421938
@뉴식
@뉴식 4 жыл бұрын
This cording can use GPU? and How can I train dataset ?
@bao_luong
@bao_luong 4 жыл бұрын
Please make tutorial about detect custom object on jetson
@abdiasponce
@abdiasponce 4 жыл бұрын
x2 !!!
@chuko2548
@chuko2548 4 жыл бұрын
can i optimize with tensorrt a pre-trained tensorflow model ? how can i do that? thank you!!
@orangehatmusic225
@orangehatmusic225 4 жыл бұрын
Sure, just retrain it.
@afifothman335
@afifothman335 4 жыл бұрын
Hello.. Thanks for your video tutorial... I'm already follow this tutorial..but when detect the car, only can detect the from the side of car.. Can't detect from top of car.. How to solve this problem??
@AndyKong51
@AndyKong51 4 жыл бұрын
Any update of doing object detection training on board? Thx
@owltoe0164
@owltoe0164 4 жыл бұрын
I followed this tutorial and it works fine, but I only get 5 fps (8 fps with the raspberry pi camera). How do I get to 22 fps like in the video?
@mk677hd
@mk677hd 4 жыл бұрын
Cool. gonna play with it soon.
@feelgood413
@feelgood413 4 жыл бұрын
Does this code work in NVIDIA PX2? Do we have to make some modification ?
@dusty-nv
@dusty-nv 4 жыл бұрын
I haven't tested it on DRIVE PX2, however perhaps you should be able to compile it. It does use GStreamer for the CSI camera, and I'm not sure if that's provided on DRIVE platform or not.
@feelgood413
@feelgood413 4 жыл бұрын
How to use similar code for NVIDIA Px2?
@rahulmoorkoth2395
@rahulmoorkoth2395 4 жыл бұрын
Very informative video. Thanks
@sajjadakhter7261
@sajjadakhter7261 4 жыл бұрын
Really good i like it, i was looking for something to identify a person (not just object type), Is thats possible with this library or any idea how it can be done. The reason i am saying person identification not just face recognition is that sometimes its not that easy to get face clear enough to identify a person. Also body has more attributes to compare than just face and i was hoping it may improve accuracy.
@dusty-nv
@dusty-nv 4 жыл бұрын
Hi, person recognition or face recognition is typically a 2-stage process where first the coordinates of the person/face are detected (any person, like shown in this tutorial). Then the features from the encoder portion of the network are saved to form a 'profile' of individuals, which are matched against your running database as time goes on. I don't have that later portion in this library, but you could check other implementations online.
@sajjadakhter7261
@sajjadakhter7261 4 жыл бұрын
@@dusty-nv Thanks for your response, i am understanding that with this library i can detect where the persons are in, then take that picture and run through some person identification? Any recommended library/product. thanks
@SunilKumar-wh6ph
@SunilKumar-wh6ph 7 ай бұрын
How to install Jetson nano in a laptop?
@AndyKong51
@AndyKong51 4 жыл бұрын
My application is to track a custom object and output its coordinates. I have done the custom classification based on your tutors. Thx. How can I do the custom object detection? Can I do the training in nano? Slow is fine. If not, do I need to use DIGITS? How to import the model to nano? Thx
@dusty-nv
@dusty-nv 4 жыл бұрын
Hi, see this post for some resources on re-training SSD-Mobilenet on custom dataset: devtalk.nvidia.com/default/topic/1070225/jetson-nano/digits-or-somthing-else/post/5421938/#5421938
@dheerajdhawan4176
@dheerajdhawan4176 4 жыл бұрын
Has anyone used Jetson nano for custom trained object detection model instead of pretrained models, How was the performance? Is it detecting as fast as shown in demo video? Your feedback would be highly appreciated.
@TPA22222
@TPA22222 4 жыл бұрын
Really good tutorial 😊. How would I print out the location of the bounding boxes?
@dusty-nv
@dusty-nv 4 жыл бұрын
Add these lines of code after net.Detect: print("detected {:d} objects in image".format(len(detections))) for detection in detections: print(detection) You can also access the bounding box and other detection attributes such as ClassID, Confidence, ect by using the members shown here (look under jetson.inference.detectNet.Detection documentation): rawgit.com/dusty-nv/jetson-inference/python/docs/html/python/jetson.inference.html#detectNet
@TPA22222
@TPA22222 4 жыл бұрын
@@dusty-nv thank you 😊
@내아이디-n5n
@내아이디-n5n 4 жыл бұрын
Thank you for teaching but i have a problem AttributeError: 'jetson.utils.gstCamera' object has no attribute 'CaputureRGBA' could you tell me what is the problem??
@dusty-nv
@dusty-nv 4 жыл бұрын
Hi, I think you made a typo - it should be 'CaptureRGBA' instead of 'CaputureRGBA'
@arisatrombley8140
@arisatrombley8140 9 ай бұрын
Can you use these object detection models within ISAAC ROS on GPU? jetson inference builds within the isaac ros container but it doesn't have the pop up for me to select which model to download. I wanted to use the people net model
@arisatrombley8140
@arisatrombley8140 9 ай бұрын
im using a jetson orin nano with cuda 11.4
@fpgamachine
@fpgamachine 4 жыл бұрын
Excellent it works very well thanks!
@el_moustaschbil
@el_moustaschbil 4 жыл бұрын
Hello, it seems like some files are missing... When I compile through a make command it appears like: ~/jetson-inference/c/tensorNet.cpp:32:10: fatal error: NvOnnxParser.h: no file or directory of this type #include "NvOnnxParser.h" ... When I take a look on tensorNet.cpp (the file who's in need of the file missing), I can see #include "NvCaffeParser.h" ... #include "NvOnnxParser.h" #include "NvUffParser.h" #include "NvInferPlugin.h" I can't find them and apparently I can't download them because the files aren't on your github. Do you have any idea how I can progress ?
@dusty-nv
@dusty-nv 4 жыл бұрын
It seems like you don't have TensorRT installed on your Jetson (TensorRT is included with the JetPack image). Those headers should be found under your /usr/include/aarch64-linux-gnu/ directory If you don't have TensorRT, did you do a custom flash with SDK Manager? If you used SDK Manager, you should choose to install TensorRT on the target. Otherwise, you may want to setup the JetPack image again.
@giangonzalez3283
@giangonzalez3283 4 жыл бұрын
Can you use the same code on a raspberry?
@grumpyyyrider
@grumpyyyrider 4 жыл бұрын
for anyone who got the gst error with RGBA, use "0" instead of "/dev/video0"
@gprashant840
@gprashant840 4 жыл бұрын
Dude you are awsome!!!
@bschlueter
@bschlueter 4 жыл бұрын
Would be cool if the SD card slot also supports ufs cards
@CodX710
@CodX710 Жыл бұрын
since its literly booting from it then not realy unless your fine with like 20 minute (idk exactly) boot time :D
@CodX710
@CodX710 Жыл бұрын
just noticing that you commented 3 YEARS AGO...............
@ashok_ign5623
@ashok_ign5623 4 жыл бұрын
PowerServiceHwVic::cleanupResources i got this after first frame and code stopped please help ??
@rudreshmehta6510
@rudreshmehta6510 4 жыл бұрын
I do not have jetson , any other way?
@KevinBocky1
@KevinBocky1 4 жыл бұрын
Thanks, very cool
@Iammrbt2
@Iammrbt2 4 жыл бұрын
Doesn't work with an RTSP data stream :/
@dowiee2694
@dowiee2694 4 жыл бұрын
That dog is so fucking cute!!!
@sohailawan77
@sohailawan77 4 жыл бұрын
Please make tutorial on counting of vehicles on a road in real time.
@dusty-nv
@dusty-nv 4 жыл бұрын
Hi, I would check the NVIDIA DeepStream SDK which is built for realtime analytics like you mentioned.
@romangerasimov3523
@romangerasimov3523 4 жыл бұрын
hmmmm... if it add it to drone... and write to increase speed to contact, and center image at center of screen (by servos) = hunter-seeker terminator ps: waiting for 1st terminator algoritm (I'm too lazy to write)
@stahelpeter
@stahelpeter 4 жыл бұрын
Very interesting tutorial. I run the python code from either Mobaxterm or VNC desktop but always get this error [OpenGL] failed to create X11 Window. (have a Logitec C920 connected at /dev/video0) Any hint what the problem could be? Does anyone have the demo running with my setup? (no monitor on HDMI)
@fernandohenriques6754
@fernandohenriques6754 4 жыл бұрын
You need to activate xforward! In mobaxterm u just need to click in the button X on upper right corner that says "X server"!
@stahelpeter
@stahelpeter 4 жыл бұрын
@@fernandohenriques6754 Thank you for the answer. After a new installation I'm able to run python scripts like imagenet-camera.py with USB or CSI camera within VNC without problems. When I run the same imagenet-camera.py in mobaxterm (X11 server running) a black window opens and after a while it ends with short dump. To open camera windows in mobaxterm with OpenCV works fine. Can you confirm you are able to run python scripts from the tutorial within mobaxterm without problems? For me it looks like the issue is the methode in jetson.utils package (camera = jetson.utils.gstCamera(opt.width, opt.height, opt.camera))
@toordog1753
@toordog1753 4 жыл бұрын
Yeah, that's not object detection, that's special detection...
@payloan4558
@payloan4558 4 жыл бұрын
Is that running on android?
@dusty-nv
@dusty-nv 4 жыл бұрын
It's running on Ubuntu from NVIDIA JetPack - developer.nvidia.com/embedded/jetpack
@laurencevanhelsuwe3052
@laurencevanhelsuwe3052 4 жыл бұрын
All these needed steps are just insanely user unfriendly. Think about that and consider what impact this has on sales. Look at how Tinkerforge (the DE company) manages to bring technical stuff to its users without burying them in accidental complexity.
@AlanWagoner
@AlanWagoner 4 жыл бұрын
Damn that's cool tech!
@adilhossain227
@adilhossain227 4 жыл бұрын
Sir, i have my custom trained inference graph (based on SSD inception), how can I run that in this code?
@julayelei
@julayelei 4 жыл бұрын
Cool!
@tunaakyol2579
@tunaakyol2579 4 жыл бұрын
how can i rotate the camera ? I am using detectnet.py
@dusty-nv
@dusty-nv 4 жыл бұрын
You can change the flip-method here: github.com/dusty-nv/jetson-utils/blob/798c416c175d509571859c9290257bd5cce1fd63/camera/gstCamera.cpp#L416 Then re-run 'make' and 'sudo make install'. You can find the values for flip-method by running 'gst-inspect-1.0 nvarguscamerasrc'
@gwitichis1
@gwitichis1 4 жыл бұрын
CNN or NN object detection needs high power computing and is a dead end for small/mobile applications. Object detection with the IBM true north chip is low power due to spike technology.
@ashwinkp7828
@ashwinkp7828 Жыл бұрын
hey i have a doubt, did you any algorithm in this
@Sajanrajtd
@Sajanrajtd 4 жыл бұрын
excellent......
@OthmaneGUESSOUS
@OthmaneGUESSOUS 10 ай бұрын
il est ou detect net console
@joelguino-o4916
@joelguino-o4916 4 жыл бұрын
thank you..
@robotics4.077
@robotics4.077 4 жыл бұрын
Thanks :D
@augustopozzebon3188
@augustopozzebon3188 4 жыл бұрын
he looks like Roy from "The Office"
@saibollu7073
@saibollu7073 4 жыл бұрын
Does anyone konow How to get the exact coordinates of the perticular object in frame and area of the object
@Goodwill345
@Goodwill345 4 жыл бұрын
You need to get the pose of the object, pose means x,y,z and rotations total 6dof. You need to transpose camera coordinates to world coordinates. There must be a DNN for this already
@dusty-nv
@dusty-nv 4 жыл бұрын
You can directly access the members of the detection results, including coordinates, area, classID, confidence, ect. See the documentation under 'jetson.inference.detectNet.Detection' here: rawgit.com/dusty-nv/jetson-inference/python/docs/html/python/jetson.inference.html#detectNet
@FalguniDasShuvo
@FalguniDasShuvo 4 жыл бұрын
It would have been nicer if it was detecting itself ( a Jetson Nano ) [ 22:54 ]
@PranshuTople
@PranshuTople 4 жыл бұрын
How to run similar object detection on a .MP4 video file that I have in the same directory
@dusty-nv
@dusty-nv 4 жыл бұрын
Hi Pranshu, see this post to run it on video: devtalk.nvidia.com/default/topic/1071209/jetson-nano/detectnet-video-/post/5427509/#5427509 You may need to convert your MP4 file using ffmpeg tool or similar, to a format/codec that OpenCV is able to read.
@andyrodrigoalvarado118
@andyrodrigoalvarado118 4 жыл бұрын
I wish more time, why I'm so busy :(
@MrBratkenSolov
@MrBratkenSolov 4 жыл бұрын
let me guess, you call library with 200k lines of code in your project with 10 lines of code? Stupid clickbaits **checks video** yep
@ewaldsteven
@ewaldsteven 4 жыл бұрын
Please don't kill me.
@andrzejostrowski5579
@andrzejostrowski5579 4 жыл бұрын
Am I the only person bothered by this API not following PEP-8 rules?
@Praxss
@Praxss 4 жыл бұрын
Nvidia with linux....
@leeornehardea7137
@leeornehardea7137 4 жыл бұрын
I get this error: jetson.inference.__init__.py Traceback (most recent call last): File "./detectnet-console.py", line 24, in import jetson.inference File "/usr/lib/python3.6/dist-packages/jetson/inference/__init__.py", line 4, in from jetson_inference_python import * ImportError: dynamic module does not define init function (initjetson_inference_python) I installed everything and followed the Github page but no luck. Any ideas?
@fvw94
@fvw94 4 жыл бұрын
I have a similar problem, still figuring out how to fix it ImportError: No module named jetson.inference
@dusty-nv
@dusty-nv 4 жыл бұрын
@@fvw94 if you run the program as "python3 detectnet-console.py" or "python detectnet-console.py", are you able to get past the import?
@fvw94
@fvw94 4 жыл бұрын
@@dusty-nv yep, I needed to add python3
@leeornehardea7137
@leeornehardea7137 4 жыл бұрын
@@fvw94 did it work for you that way?
@fvw94
@fvw94 4 жыл бұрын
@@leeornehardea7137 yes it did :D
@enarm5947
@enarm5947 4 жыл бұрын
after running the script, my nano power off
@dusty-nv
@dusty-nv 4 жыл бұрын
Before running the script, try setting the power mode to 5W: $ sudo nvpmodel -m 1 If your Nano no longer powers off in 5W mode, it may be that your power supply doesn't deliver a consistent 10W. See this thread for some other power supplies that you could try: devtalk.nvidia.com/default/topic/1048640/jetson-nano/power-supply-considerations-for-jetson-nano-developer-kit/
@enarm5947
@enarm5947 4 жыл бұрын
@@dusty-nv thank you, worked
@khatharrmalkavian3306
@khatharrmalkavian3306 4 жыл бұрын
10 lines of code? Why don't you just call it one line on the command-line? What a quack.
@bigeye6525
@bigeye6525 4 жыл бұрын
NB!
@leonc2940
@leonc2940 4 жыл бұрын
听力时间
@skewty
@skewty 4 жыл бұрын
how typical.. Released with an old outdated version of Ubuntu. That should be a clear indication to everybody that NVIDIA doesn't really care to support this well. I'd caution investing too much into development on this platform especially since NVIDIA is notorious for being a terrible linux supporter.
@gachihard7397
@gachihard7397 6 ай бұрын
Absolute lifesaver thanks king 🫡
Jetson AI Fundamentals - S3E4 - Object Detection Inference
17:55
NVIDIA Developer
Рет қаралды 57 М.
Nvidia Jetson(s) Explained - in under 400 seconds!
6:25
Hardware.ai
Рет қаралды 24 М.
小丑揭穿坏人的阴谋 #小丑 #天使 #shorts
00:35
好人小丑
Рет қаралды 41 МЛН
Human vs Jet Engine
00:19
MrBeast
Рет қаралды 189 МЛН
Trapped by the Machine, Saved by Kind Strangers! #shorts
00:21
Fabiosa Best Lifehacks
Рет қаралды 25 МЛН
Which team will win? Team Joy or Team Gumball?! 🤔
00:29
BigSchool
Рет қаралды 13 МЛН
How to do Object Detection using ESP32-CAM and Edge Impulse YOLO Model
16:50
Top 18 Most Useful Python Modules
10:50
Tech With Tim
Рет қаралды 932 М.
Jetson Nano Developer Kit - Getting Started with the NVIDIA Jetson Nano
24:57
Nvidia CUDA in 100 Seconds
3:13
Fireship
Рет қаралды 1,3 МЛН
Jetson Orin Nano - 75x Faster Than A Raspberry Pi
11:45
Gary Explains
Рет қаралды 59 М.
Ultimate Jetson Orin Nano  Walkthrough
10:06
JetsonHacks
Рет қаралды 66 М.
The Vim Experience
45:19
Bog
Рет қаралды 139 М.
How I animate 3Blue1Brown | A Manim demo with Ben Sparks
53:41
3Blue1Brown
Рет қаралды 954 М.
Jetson AI Fundamentals - S3E5 - Training Object Detection Models
24:34
NVIDIA Developer
Рет қаралды 90 М.
Jetson AI Fundamentals - S3E1 - Hello AI World Setup
20:33
NVIDIA Developer
Рет қаралды 97 М.
小丑揭穿坏人的阴谋 #小丑 #天使 #shorts
00:35
好人小丑
Рет қаралды 41 МЛН