Object Detection best model / best algorithm in 2023 | YOLO vs SSD vs Faster-RCNN comparison Python

  Рет қаралды 15,767

Datum Learning

Datum Learning

Күн бұрын

Пікірлер: 13
@flueepwrien6587
@flueepwrien6587 7 ай бұрын
You could put the videos you are mentioning in the description for ease of use.
@SalihFCanpolat
@SalihFCanpolat Жыл бұрын
I would beg to differ, ease of implementation is the WORST for YOLOv8 if you wish to implement it yourself from ground zero. Let us say you wish to prune the model to be used along with security cameras or in an environment where the GPU does not support as many operations then you need to custom make your own architecture. It is easy to follow YOLOv1 for or R-CNN but for modern YOLOv8 the whole process is convoluted mess. I believe data science channels should focus more on real world applications then data science bootcap lies.
@phantomgaming5199
@phantomgaming5199 Жыл бұрын
What is the fastest and lightest model we can use? That detects/classifies object that are easy to detect. It should just have negligible impact on realtime detection
@lolstalk
@lolstalk Жыл бұрын
yolov8n
@sedatcakici4549
@sedatcakici4549 Жыл бұрын
Hello, just wanted to say that I love your content very much, it's very interesting and informative. Thanks a lot
@datumlearning6204
@datumlearning6204 Жыл бұрын
Thank You.
@subhankhan6180
@subhankhan6180 3 ай бұрын
I disagree with the ease of implementation, it all depends on your own transfer learning or inference file. There are heaps of examples where you just parse items and use single CLI for both SSD and Faster-RCNN. Ultimate winner should be SSD due to it’s inference and latency plus the ability to be used commercially. Most of yolo algorithms are either AGPL or GPL licensed, which requires heaps of money to be used commercially!
@datumlearning6204
@datumlearning6204 3 ай бұрын
Obviously, when I talked about ease of implementation, I meant Python and not terminal/bash. As far as commercial use is concerned, I am not going to comment on that as that was not one of the parameters of comparison. The parameters were speed, accuracy and ease of implementation. Lastly, newer versions of YOLO are the fastest, I have verified that. BTW, thank you for the question.
@gz3442
@gz3442 20 күн бұрын
hardware requirement ?
@HighlyTheoretical
@HighlyTheoretical Жыл бұрын
What about when using a framework like open-mmlab
@floatonArt
@floatonArt Ай бұрын
Bro can you please provide training script for the ssd and faster rcnn please
@StudyEnablers
@StudyEnablers Жыл бұрын
So yolo v8 is winner, whats about detectron2.
@s177267
@s177267 Жыл бұрын
Dear Sir, would it be possible to have private contact related to the above topic?
YOLO (You Only Look Once) algorithm for Object Detection Explained!
30:21
Balaji Srinivasan
Рет қаралды 95 М.
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
YOLOv8: Real-Time Object Detection with Webcam
15:22
Nicolai Nielsen
Рет қаралды 118 М.
43   R CNNs, SSDs, and YOLO
15:49
exter minar
Рет қаралды 7 М.
Build an Image Search Engine || PyTorch, Python
45:47
Vision Programmer
Рет қаралды 59
Object Detection in 10 minutes with YOLOv5 & Python!
10:45
Rob Mulla
Рет қаралды 298 М.
YOLO Object Detection (Part 1)
18:53
SCET Berkeley
Рет қаралды 49 М.
Single Shot Detector | SSD | Object Detection Using SSD
9:00
Code With Aarohi
Рет қаралды 63 М.
What's New in YOLOv8 | Model Deep Dive
11:35
Roboflow
Рет қаралды 39 М.
Google’s Quantum Chip: Did We Just Tap Into Parallel Universes?
9:34
Track & Count Objects using YOLOv8 ByteTrack & Supervision
26:11
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН