Exciting work! I look forward to to being able to eventually understand it haha
@TheSam19025 жыл бұрын
This video is amazing. Researching this very paper since last week and seeing the actual presentation is lifesaving
@declan60525 ай бұрын
Wow, at 9:59 we see the very beginning of diffusion models! Very cool to see something so impactful in its infancy
@rstar00005 жыл бұрын
Amazing work!
@DrOsbert5 жыл бұрын
Please do support our channel by subscribing and sharing the video to others. Love & Peace!
@dustinkendall33655 жыл бұрын
So do these odes model a function as simply a function of time, because I want to make it as a function of time with position and velocity as initial condition parameters. How do I do this?
@rickymort135 Жыл бұрын
well it's ODEs of the form x' = f(x, t) so f is modelling the velocity - the only inputs you can put in are positions and time. To input velocity you'd need f to give you: f(initial_position) = initial_velocity. This is a little tricky. You could include include training examples [initial_position, initial_velocity] and train f on this with a big penalty for deviation
@bananarobotoverlord5 жыл бұрын
So 1/2 the parameters, but 2-4x the FLOPs?
@DrOsbert5 жыл бұрын
You can say so but It depends on the actual use case
@ranam5 жыл бұрын
2:26
@OneShot_cest_mieux4 жыл бұрын
What is theta please ? I don't understood.
@youcancode69884 жыл бұрын
Theta is the parameters
@OneShot_cest_mieux4 жыл бұрын
@@youcancode6988 What parameter for example ? And theta seems to be a function of time
@OneShot_cest_mieux4 жыл бұрын
@@youcancode6988 I hope you don't comment your code by writing "var1 is the first parameter, var2 is the second parameter, [...]"
@youcancode69884 жыл бұрын
@@OneShot_cest_mieux Theta is the weighted values given to each input on each node in each layer of the neural network
@OneShot_cest_mieux4 жыл бұрын
@@youcancode6988 ok thank you
@iworeushankaonce4 жыл бұрын
Amazing talk, and a huge dislike for the amount of commercials you put in this video. shame