Beautiful interplay of the two techniques! This result was marvelous.
@maths_505 Жыл бұрын
Indeed So far I haven't seen an integral that gives a similar result
@adityabharadwaj4114 Жыл бұрын
Very nice method! Really liked it. Thank you🙏🙏
@Gamberizzati Жыл бұрын
nice. however there is an elementary solution in one line using the residue theorem applied to the function Re(e^(iz)/(z^2+1)).
@maths_505 Жыл бұрын
Yes indeed but I just love using real methods wherever possible
@zlatanbrekke653810 ай бұрын
The residue Theorem is so powerful in this case. I only had to look at the integral and calculate it in my head, I didn’t have to write a single line down. I could SEE what the answer would be. Such a beautiful, powerful tool.
@renesperb Жыл бұрын
Another aprroach is to use Fourier -transforms:Consider the integral of Exp[i x y]/(1+x^2) ,which corresponds to √(2*π) * Fourier transform of 1/(x^2+1). The FT of 1/(x^2+1) is √(π/2)*Exp[- | y |]. For y=1 you get π/e . To see that the Fourier transform of 1/(x^2+1) is given by the term written before , one can just use the inverse FT of Exp[- | y |] which is easy to calculate.
@techanalyst23 Жыл бұрын
Absolutely gorgeous one ❤️🔥
@helker999 Жыл бұрын
such an underrrated math channel
@MilkoAtchev Жыл бұрын
Wow! Great result and techniques for solving! Thank you👍
@wagsman9999 Жыл бұрын
wow... very nice, stunning result
@cytosАй бұрын
Using the famous engineering equation cosx=1, we can transform this integral into int(-inf, inf) 1/(x^2 + 1) dx, which is simply the arctan integral evaluated from -inf to inf, giving us pi. A truly beautiful result, round of applause
Жыл бұрын
❤❤❤❤❤❤ Beautiful interplay of techniques!!
@hanspetermarro4188 Жыл бұрын
Nice video along a touristic route of mathematical techniques. Contour integration in the complex plane makes this a one-liner.
@renesperb Жыл бұрын
The technique used is by no means simple. I would assume that someone who is able to do that also knows residue theory .Use that you may take the real part of Exp[ i x] and use that 1/(x^2+1)= 1/2 i (1/(x-i)-1/(x+ i) ,which leads to π * i *(-i *Exp[-1] = π/e
@maths_505 Жыл бұрын
Indeed but I just love using real techniques whenever possible
@social6332 Жыл бұрын
beautiful solution.
@roderictaylor2 ай бұрын
Very nice.
@gianlucastrong3496 Жыл бұрын
Thank you very much!
@kartikeyasaxena3465 Жыл бұрын
Love from India 👍
@jasonlin5884 Жыл бұрын
But what if replace the cos(x) with sin(x) ? It surely converge (seems converge to 0.64...). , but I can't work out. I get it equal to infnity*0
@blblblblblbl75054 ай бұрын
It gives 0 because the function is odd
@jasonlin58844 ай бұрын
@@blblblblblbl7505 sorry !i forgot to rewrite the integrated boundary from 0 to plus infinity . It is converged. Converge to 0.6xxxxx
@NotreDameCollege-ju6fl2 ай бұрын
which software you use to write like these?
@thomasblackwell9507 Жыл бұрын
Beautiful! This is a combination of the Feynman Technique and the Laplace Transform right?
@maths_505 Жыл бұрын
Not exactly The feynman technique is based on differentiating a parameter The laplace transform is more of an integration w.r.t a parameter along with the introduction of an exponential term involving that parameter
@thomasblackwell9507 Жыл бұрын
@@maths_505 --Thank you, sir.
@holyshit922 Жыл бұрын
@@maths_505 is special case of integration with respect to a parameter
@epsilia3611 Жыл бұрын
Let's say I integrate from -infty to +infty the function x, wrt x. Can I use the fact that x is an odd function in order to say that the I definite integral is zero? The same way here, how do we know the parity on an indefinite integral applies ? Because the function you're integrating is bounded maybe? In that case why is it a valid argument?
@maths_505 Жыл бұрын
You can integrate x from -a to +a and you'll get zero. Taking the limit to infinity of something that's zero is zero so yes the argument is valid in this case Nd yes part of the reason why the parity applies is that the function we're integrating is bounded. However that's part of the bigger picture where we need boundedness to actually get a solution that's valid.
@epsilia3611 Жыл бұрын
No need to delete my response really, it's okay if you don't have the response to my question...
@maths_505 Жыл бұрын
I haven't deleted it I responded an hour ago
@epsilia3611 Жыл бұрын
@@maths_505 I was talking about the 3 other comments that were deleted in a row ...
@maths_505 Жыл бұрын
Deleted? I haven't deleted anything Perhaps they're being held in review Let me check
@kennethwilliams4169 Жыл бұрын
Nice!
@damrgee8279 Жыл бұрын
Can somebody tell me how all of this is used in the real world
@noedeverchere2833 Жыл бұрын
In engineering
@bmrm2004 Жыл бұрын
Beaufiful result. Can also be accomplished using complex analysis.
@maalikserebryakov Жыл бұрын
Yep that was my first reaction
@mohammadmohammad-qi2os Жыл бұрын
awesome
@abouzarmansouri Жыл бұрын
Why should I use such a long method? There are much shorter methods
@giack6235 Жыл бұрын
I'm not very sure on 0:30 passage: function is even ok, but doubling the integral and behalfing the integration domain in case of integrand even function works only when extremes of integration are finite. If extremes are not finite we don't know how each extreme approaches its infinity (+inf and -inf respectively) and so we don't necessarily have a symmetric integration area. I think the passage is true only in the principal value of the integral sense.