Lecture 2 | Introduction to Riemannian geometry, curvature and Ricci flow | John W. Morgan

  Рет қаралды 15,029

Лекториум

Лекториум

Күн бұрын

Пікірлер: 4
@robertgilmore1655
@robertgilmore1655 7 жыл бұрын
[ The standard result I think is : D det A =( det A) Tr( A^(-1) D A) where D is the time derivative , A is a time function and A^(-1) is the inverse of matrix A]
@ricci1729
@ricci1729 11 жыл бұрын
This is the 2nd lecture: Introduction to Riemannian geometry
@robertgilmore1655
@robertgilmore1655 7 жыл бұрын
Dear Prof Morgan, thank you very much for your nice lectures. I have a doubt : when you compute the time derivative of Vol(U) (under a Ricci flow), and apply an standard result for the time derivative of the determinant of the metric g (about minute 48 of the video), there is not an inverse of matrix g factor missing inside the Trace? Thank you. [the standard formula I think is: D det A(t) = det A(t) Tr(A^(-1) D A(t)) where D is the time derivative and A^(-1) is the inverse of the A matrix )
@HotPepperLala
@HotPepperLala 6 жыл бұрын
Where is lecture 3?
They Chose Kindness Over Abuse in Their Team #shorts
00:20
I migliori trucchetti di Fabiosa
Рет қаралды 9 МЛН
I Turned My Mom into Anxiety Mode! 😆💥 #prank #familyfun #funny
00:32
Wait for the last one 🤣🤣 #shorts #minecraft
00:28
Cosmo Guy
Рет қаралды 25 МЛН
Ricci Flow - Numberphile
14:41
Numberphile
Рет қаралды 966 М.
Differential Geometry - Claudio Arezzo - Lecture 01
1:29:40
ICTP Mathematics
Рет қаралды 166 М.
Lecture 1 | Mean curvature flow | Gerhard Huisken | Лекториум
1:18:55
Poincaré Conjecture - Numberphile
8:52
Numberphile
Рет қаралды 2,7 МЛН
History of the Poincaré Conjecture - John Morgan
37:10
PoincareDuality
Рет қаралды 41 М.
Riemannian manifolds, kernels and learning
56:33
Microsoft Research
Рет қаралды 82 М.
Simon Donaldson: Kaehler-Einstein metrics and algebraic geometry I
48:19
Harvard Mathematics Department
Рет қаралды 18 М.
They Chose Kindness Over Abuse in Their Team #shorts
00:20
I migliori trucchetti di Fabiosa
Рет қаралды 9 МЛН