Pandas tips and tricks | in Urdu/Hindi | Day-9

  Рет қаралды 9,252

Codanics

Codanics

Күн бұрын

#datascience
---------------------------------------------------------------------------------------------------------------------------------------
Video Description:
---------------------------------------------------------------------------------------------------------------------------------------
✅Subscribe to our Channel to learn more about the top Data Science, Machine Learning and Deep Learning : / codanics
---------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------------------------
Explore other free courses here:
🔥 Python ka chilla v1.0 for Data Science (playlist): • Python_ka_chilla (pyth...
🔥 Machine learning ka chilla (playlist): • Video
🔥 Streamlit course for dash boards and webapps for data science (playlist):
• Streamlit for webapps/...
🔥 Cloud computing (playlist): • Cloud Computing for Be...
🔥 #RwithAammar Programming with R for Data Analysis and Data Science (Playlist): • Complete Data Science ...
🔥 Make publication ready graphs in Rstudio: • Publication Ready Graphs
🔥 Computer Vision openCV in Python (Playlist): • Computer Visions (open...
🔥MS Excel for Data Analysis: • Microsoft Excel for In...
🔥 SQL complete course in Hindi/Urdu: • SQL | mySQL Complete C...
---------------------------------------------------------------------------------------------------------------------------------------
🔥-Follow me on following platforms:
1. Twitter: / aammar_tufail
2. github: github.com/Aam...
3. Tiktok: / draammar
---------------------------------------------------------------------------------------------------------------------------------------
#dataScience
Join this telegram group for regular updates via zoom meeting 1-to-1 sessions: t.me/codanics
---------------------------------------------------------------------------------------------------------------------------------------
for more details:
www.codanics.com

Пікірлер: 28
@salmatahira4865
@salmatahira4865 Жыл бұрын
Bht informative lectures h apk sary mashallah
@umesalmahyder8529
@umesalmahyder8529 8 ай бұрын
A great Teacher. Excellent work Ustaad. excellent step by step guide to learn pandas easily. u have extremely simplified all the concepts. & best part is that you start the class with Bismillah.. a Super Power Word
@zohaib.qureshi
@zohaib.qureshi Жыл бұрын
Bro you are an excellent teacher.
@salmatahira4865
@salmatahira4865 Жыл бұрын
Jazak Allah
@fitfaizan1
@fitfaizan1 Жыл бұрын
Thank you so much sir for this series
@desiikhayal
@desiikhayal Жыл бұрын
i have watched may videos on data science but you are doing marvelous. I really appreciate your effort .I m subscribing you
@azamiqbal8792
@azamiqbal8792 Жыл бұрын
Great 👍
@alpha7101
@alpha7101 Жыл бұрын
break for gap achi thi ...
@StarGazeUniverse
@StarGazeUniverse Жыл бұрын
23:43 The Iris flower dataset is a widely used dataset in the field of data science and machine learning. It's often employed for tasks such as classification, clustering, and data exploration. This dataset contains information about different species of iris flowers. Here's an explanation of the Iris flower dataset and its columns: **Columns in the Iris Dataset**: 1. **Sepal Length (cm)**: This column represents the length of the sepals, which are the outermost whorls of the flower. Sepals are usually green and protect the inner flower parts. 2. **Sepal Width (cm)**: This column represents the width of the sepals. 3. **Petal Length (cm)**: This column represents the length of the petals. Petals are the colorful, inner parts of the flower. 4. **Petal Width (cm)**: This column represents the width of the petals. 5. **Species**: This column indicates the species of the iris flower. It's the target variable, and there are three species in the dataset: setosa, versicolor, and virginica. The Iris dataset is typically used for supervised learning tasks, where the goal is to predict the species of the iris flower (the target variable) based on the measurements of sepal and petal length and width. It is a small, well-understood dataset, making it an excellent choice for educational purposes, testing and demonstrating various machine learning algorithms, and practicing data analysis techniques. The Iris dataset is available in many machine learning libraries and is commonly used for tasks such as classification, clustering, and dimensionality reduction. It's often one of the first datasets that data scientists and machine learning practitioners work with to learn the ropes of data analysis and model building.
@MDJUNAIDALAM-i4i
@MDJUNAIDALAM-i4i 11 ай бұрын
love from india
@wasimakram1891
@wasimakram1891 4 ай бұрын
@monicagarg6691
@monicagarg6691 Жыл бұрын
@41:46 nan means not a number. It represents a missing value in data.
@muhammadnouman3175
@muhammadnouman3175 Жыл бұрын
done
@shafiullahmarwat7165
@shafiullahmarwat7165 Жыл бұрын
Columns Description: You can check what actually the 'titanic' dataset cols mean: campus.lakeforest.edu/frank/FILES/MLFfiles/Bio150/Titanic/TitanicMETA.pdf
@abdullahsajid9373
@abdullahsajid9373 Жыл бұрын
Survived: Binary variable indicating whether a passenger survived (1) or not (0). Pclass: Ticket class, representing the socio-economic status of the passenger (1st, 2nd, or 3rd class). Sex: Gender of the passenger. Age: Age of the passenger. SibSp: Number of siblings/spouses aboard the Titanic. Parch: Number of parents/children aboard the Titanic. Fare: Fare paid by the passenger. Embarked: Port of embarkation (C = Cherbourg, Q = Queenstown, S = Southampton). Class: Same as Pclass but with a different naming convention. Who: Describes the passenger as a man, woman, or child. Adult_male: Boolean variable indicating whether the passenger is an adult male. Deck: Deck on which the passenger's cabin is located. Embark_town: Town from which the passenger embarked. Alive: Survival status (yes or no). Alone: Boolean variable indicating whether the passenger was traveling alone (without siblings, spouses, parents, or children).
@Arslanvlog0
@Arslanvlog0 Жыл бұрын
survival - Survival (0 = No; 1 = Yes) class - Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd) name - Name sex - Sex age - Age sibsp - Number of Siblings/Spouses Aboard parch - Number of Parents/Children Aboard ticket - Ticket Number fare - Passenger Fare cabin - Cabin embarked - Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton) boat - Lifeboat (if survived) body - Body number (if did not survive and body was recovered)
@SelroosirSirsir
@SelroosirSirsir Жыл бұрын
Sir i am following ur series on yt but you skipped the day 7 and 8. SO now can you please tell how i follow?
@rehanahmed7072
@rehanahmed7072 Жыл бұрын
sir ye sara code please github ma upload krdy udr sa pratice krna ma bhot east ho jata ha app sara days ka code github ma uplaod krdy thanks very much
@saeedahmadldcqurantafseer1855
@saeedahmadldcqurantafseer1855 7 ай бұрын
32 pounds
@muhammadihsan8177
@muhammadihsan8177 Жыл бұрын
nan is not a number
@muhammadtahir4832
@muhammadtahir4832 Жыл бұрын
phool.to_excel("IRIS.xlsx")
@monicagarg6691
@monicagarg6691 Жыл бұрын
@15:56 sns.get_dataset_names() . there are 22 datasets in seaborn library
@Khanacade
@Khanacade 5 ай бұрын
done
@ahmaddureedalvi2057
@ahmaddureedalvi2057 3 ай бұрын
Done
Data Wrangling in Python | in Urdu/Hindi | Day-10
1:25:46
Codanics
Рет қаралды 10 М.
Pandas (Python) tips and tricks | in Urdu/Hindi
2:05:25
Codanics
Рет қаралды 23 М.
What type of pedestrian are you?😄 #tiktok #elsarca
00:28
Elsa Arca
Рет қаралды 43 МЛН
From Small To Giant 0%🍫 VS 100%🍫 #katebrush #shorts #gummy
00:19
How Many Balloons To Make A Store Fly?
00:22
MrBeast
Рет қаралды 173 МЛН
Practical Machine Learning Course Day 4 | Data Preprocessing Steps
53:05
Gen AI Course | Gen AI Tutorial For Beginners
3:19:26
codebasics
Рет қаралды 403 М.
Data Visualization- Ramzan-Python Batch 2023 (Day-8)
54:23
Codanics
Рет қаралды 1,8 М.
How to increase the intellect ? |urdu| |Prof Dr Javed Iqbal|
9:23
Professor Dr Javed Iqbal
Рет қаралды 668 М.
Learn Machine Learning Like a GENIUS and Not Waste Time
15:03
Infinite Codes
Рет қаралды 141 М.
Day-8: Mastering Pandas Library and EDA (Part-1)
1:24:34
Codanics
Рет қаралды 19 М.
Python Pandas Tutorial for Beginners [FREE | Learn Pandas in 3 Hours
3:33:05
What type of pedestrian are you?😄 #tiktok #elsarca
00:28
Elsa Arca
Рет қаралды 43 МЛН