Simple Trig Subs won't Help you here...

  Рет қаралды 17,925

Flammable Maths

Flammable Maths

Күн бұрын

Пікірлер: 100
@NPCooking69
@NPCooking69 4 жыл бұрын
Hey my bois and grills, thanks for watching
@Hevander75
@Hevander75 4 жыл бұрын
Would love some more integrals using complex analysis
@cristofer2794
@cristofer2794 4 жыл бұрын
He hecho una imagen i made a picture of the integral resolved, a board and a known character of the loquendo videos of gta sa el tio gillipollas (the uncle asshole). imgur.com/a/FCvBh0n
@samirgeiger1042
@samirgeiger1042 4 жыл бұрын
Hey you said you would link something about your master thesis, but i cant seem to find it. It would interest me a great deal if you could maybe do that :D Grüße aus Mannheim ;)
@matron9936
@matron9936 4 жыл бұрын
Yay! Like back in the old days again.
@PackSciences
@PackSciences 4 жыл бұрын
I tried to do it by myself. I did: 1. Use Bioche's rules: (here, the Bioche's rules fail to get the sine as a valid change of variable, because it doesn't work well to predict Taylor expansions later in the problem). No conditions of the Bioche's rules is verified, therefore the change of variable is u = tan(x/2). cos(x) = (1-t²)/(1+t²), sin(x) = 2t/(1+t²), tan(x) = 2t/(1-t²), dx = 2dt / (1+t²), the bounds become respectively 0 and +infinity (it is not really a problem). One can note that log(cos(x)) = - 2 arctanh(t²) (I am not sure it's that helpful) The integral then becomes: int_0^infty of - 2 arctanh(t²) (log(2t) - log(1+t²)) 2 dt (1-t²)/ ((1-t²)*2t) = -2 int arctanh(t²) (log(2t) - log(1+t²))/(t) dt Then I realized arctanh(t²) isn't comfortable. -2 int arctanh(t²) (log(2t) - log(1+t²))/(t) dt = - int (log(1+t²) - log(1-t²))*(log(2t) - log(1+t²))/(t) dt Then I tried to distribute: - int (log(1+t²) - log(1-t²))*(log(2t) - log(1+t²))/(t) dt = int ((log(1+t²))² - log(1+t²)log(2t) + log(1-t²)log(2t) - log(1-t²)log(1+t²))/t dt = int ((log(1+t²))² + log((1-t²)/(1+t²))log(2t) - log(1-t²)log(1+t²))/t dt Then I say "ok reference integral time" so I hoped on WA and checked: int (log(1+t²))² dt = -Li3(t²+1) + Li2(t²+1) log(t²+1) + 1/2 log(-t²) log(t²+1) + C int log((1-t²)/(1+t²))log(2t)/t dt = A gigantic expression I am not going to copy here int log(1-t²)log(1+t²)/t dt = A gigantic expression I am not going to copy here either And then at that point I said, nevermind, let's go back to earlier expressions. -2 int arctanh(t²) (log(2t) - log(1+t²))/(t) dt I used the Taylor expansion of arctanh near zero. arctanh(t²) = sum_1^infty of t^(4k - 2)/(2k-1) We get: -2 int (log(2t) - log(1+t²)) sum t^(4k-3)/(2k-1) dt Interverting sum and integral works. I know that int x^n log(x) dx exists and has a closed formula for all n. I know that int x^n log(1+t²) dx does too so I said, ok good enough (there is still the problem of what to do with the sum over k, but I assumed it was going to simplify nicely). If anyone wants to pursue this solution, feel free, but it pure calculation.
@khemirimoez8661
@khemirimoez8661 4 жыл бұрын
Nerd alert nerd alert
@brucedienst7553
@brucedienst7553 4 жыл бұрын
Me, In Calc 1/2 😳
@איתןגרינזייד
@איתןגרינזייד 4 жыл бұрын
I am just impressed that you actually wrote all of this
@debajyotisg
@debajyotisg 4 жыл бұрын
This may seem trivial, but finding interesting integrals, and then solving them and presenting them in a captivating fashion takes time, effort and love for the art. Thank you for what you do! Love this series a lot.
@Yellowgary
@Yellowgary 4 жыл бұрын
As soon as I saw that log(1-t^2)log(t)/t I knew Riemann was popping up somewhere. Very nice apery boi
@aleksandervadla4840
@aleksandervadla4840 4 жыл бұрын
I tried u-sub and integration by parts. Needless to say, I am in severe pain right now.
@sansamman4619
@sansamman4619 4 жыл бұрын
0:43 : "Intermediate difficulty"
@Noam_.Menashe
@Noam_.Menashe 2 жыл бұрын
I substituted ln(sinx( and from there it was pretty simple.
@mudkip_btw
@mudkip_btw 4 жыл бұрын
Aahh yes we bac with the integarahlls, very noice one!
@mudkip_btw
@mudkip_btw 4 жыл бұрын
This one is really spicy :3
@nnniv
@nnniv 4 жыл бұрын
0:17 you gotta make a video with that accent
@mdmohiuddin7089
@mdmohiuddin7089 4 жыл бұрын
I went all the way to the end of the video just to make sure that this is not a 17 min hahahahahaha video or something :3
@grantplunkett8410
@grantplunkett8410 4 жыл бұрын
Here at work on a Saturday morning, this makes it better Thanks Flammy
@reeeeeplease1178
@reeeeeplease1178 4 жыл бұрын
Well you can also just let u=ln(sinx), du=1/tanx dx Using this sub, the integrand becomes u*ln(1-e^2u) and from there you can replace the ln by its series expansion (just like in the video) and after changing the order of summation and integral (again, just like the video), you end up with -1/2 * [Series from 1 to inf] of 1/n * [Integral from -inf to 0] u*e^(2n u) du Using integration by parts, the integral evaluates to just -1/4n^2 Multiplying this by the remaining -1/2n, you also end up with the series 1/8n^3 You can replace the ln by its series representation since |e^2x| < 1 for -inf < x < 0
@Noam_.Menashe
@Noam_.Menashe 2 жыл бұрын
Exactly what I did.
@tatjanagobold2810
@tatjanagobold2810 4 жыл бұрын
Yeah finally integrahals to keep my brain fit during the holidays :D
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
:D
@gustavgadehebsgaard5727
@gustavgadehebsgaard5727 4 жыл бұрын
I love your integheral videos. Thank you so much, papa
@ricardoparada5375
@ricardoparada5375 4 жыл бұрын
Man I was missing the old integral videos. This is very nice
@Roarshark12
@Roarshark12 4 жыл бұрын
Wow, this was one thoroughly-explained integration, thanks!!
@chan3912
@chan3912 4 жыл бұрын
Every day I wake up, hoping that it'll be a day without pain, but then I look at your videos, and my dreams are shattered.
@timenbobnar3148
@timenbobnar3148 4 жыл бұрын
omg boi i had a similar problem while studying for analizis exam ....1. year on faculty of Math and Pyzsics... keep up the good work tnx :)
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
You can avoid needing to interchange the summation and integral with a limit as ε -> 1 by instead using the substitution earlier. Let -η = log(t), so -dη = dt/t, and t^(2k) = exp(-2kη). The interval of integration (0, 1) becomes (♾, 0), but the factor -1 from expanding log(1 - t^2) into -Σ{k > 0, x^k/k} transforms the interval into (0, ♾). The integrand simplifies to η·Σ{k > 0, exp(-2kη)/k}. Now, interchanging the summation and the integral is trivial, because there is no singularity, and uniform convergence is more obvious.
@DendrocnideMoroides
@DendrocnideMoroides 2 жыл бұрын
just press Alt+236 to get this infinity sign: ∞
@JuanLopez-rl7ry
@JuanLopez-rl7ry 4 жыл бұрын
I did this a little easier but mostly the same method int_0^(π) ln(cos(x))*ln(sin(x))*cos(x)/sin(x) dx Step 1) Let's convert cos(x) = sqrt(1 - sin^2(x)) which is valid between 0 and pi, which we are happy int_0^(π/2) ln(sqrt(1 - sin^2(x)))*ln(sin(x))*cos(x)/sin(x) dx = 1/2 * int_0^(π/2) ln(1 - sin^2(x))*ln(sin(x))*cos(x)/sin(x) dx ; Step 2) Make u = sin(x); du = cos(x) dx; a = sin(0) = 0; b = sin(π/2) = 1; 1/2 * int_(0)^(1) ln(1 - u^2)*ln(u)/u du; Step 3) Make z = ln(u); dz = 1/u du; a = -∞; b = 0; u = exp(z); 1/2 * int_(-∞)^(0) z* ln(1 - exp(2z)) dz; Step 4) Let y = -z; dy = -dz; a = ∞; b = 0; 1/2 * int_(∞)^(0) y* ln(1 - exp(-2y)) dy = -1/2 * int_(0)^(∞) y*ln(1 - exp(-2y)) dy ; We know that ln(1 - q) = sum_(n = 1)^(∞) (-1)(q^n)/n; Step 5) Let q = exp(-2y) ln(1 - exp(-2y)) = sum_(n = 1)^(∞) (-1)(exp(-2y*n))/n; which is valid when (0 < y) which is excellent because that is bounds of the integral. Step 6) Plug in the summation -1/2 * int_(0)^(∞) y*sum_(n = 1)^(∞) (-1)(exp(-2y*n))/n dy; 1/2 * sum_(n = 1)^(∞) {(1/n)*[int_(0)^(infinity) (y)(exp(-2y*n)) dy]} Step 7) Integration by parts; u = y; du = dy; dv = exp(-2y*n) dy; v = exp(-2y*n)/(-2n); int (y)(exp(-2y*n))/n dy = -y*exp(-2y*n)/(2n) + int exp(-2y*n)/(2n) dy = (-y*exp(-2y*n)/(2n)) - (exp(-2y*n)/(4*(n^2))); int_(0)^(∞) (y)(exp(-2y*n))/n dy = [limit y->(∞) [(-y*exp(-2y*n)/(2n)) - (exp(-2y*n)/(4*(n^2)))]] - [limit y->(0) [(-y*exp(-2y*n)/(2n)) - (exp(-2y*n)/(4*(n^2)))]] int_(0)^(∞) (y)(exp(-2y*n))/n dy = 1/(4*(n^2)) when n > 0 which is always true in this case as the summations goes from (n => 1). Step 8) plug back into the summation 1/2 * sum_(n = 1)^(∞) [(1/n)*(1/(4*(n^2)))] = 1/8 * sum_(n = 1)^(∞) (1/n^3);
@abdusabdud8218
@abdusabdud8218 4 жыл бұрын
You are my best math teacher because I like this types of vdo
@jakubpuchatek3029
@jakubpuchatek3029 4 жыл бұрын
finally papa doin some integaralz
@antonienewman9379
@antonienewman9379 4 жыл бұрын
Finally integrals ..
@let1742
@let1742 4 жыл бұрын
damn this is so impressive when you do it
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
:)
@HAL-oj4jb
@HAL-oj4jb 4 жыл бұрын
Solving integarals really is your superpower
@linkeshifttaste1455
@linkeshifttaste1455 4 жыл бұрын
Very nice!
@lucascruz3977
@lucascruz3977 4 жыл бұрын
Is there any book where I can find similar problems?
@tgx3529
@tgx3529 4 жыл бұрын
If I use the substitution log(sin x)= t, then the substitution t=-v, I get the integral from 0 till infinity from (1/2)* v* log(1-exp(-2v))dv, I can write log(1-exp(-2v)) as series -exp(-2v(n+1))/(n+1), functions fn(v) =v*exp(-2v(n+1))/(n+1) convergent uniformly, lim sup |fn(v)-f(v)|=lim |[1/(2e*(n+1)^2] |=0, (functions fn(v)-f(v) have supremum for v=1/2(n+1), there is f(v)=0), finally I will get the same result .
@WhattheHectogon
@WhattheHectogon 4 жыл бұрын
infniti buoy
@harsh_t
@harsh_t 4 жыл бұрын
:)
@samirgeiger1042
@samirgeiger1042 4 жыл бұрын
Is it neccesarry to turn the log(t)t^(2k-1) part into the gamma function? wouldnt intgeration by parts be way easier?
@famillemagnan1313
@famillemagnan1313 4 жыл бұрын
Samir Geiger of course
@natealbatros3848
@natealbatros3848 4 жыл бұрын
Hey papa here's maybe a nice little question you might like. Create a function that gives out the sum of its numbers (for example f(2541)=2+5+4+1=12) I did find a solution to it but want to see if you have a more elegant solution.
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
You mean a function that gives that sum of the digits in the standard decimal representation of a number?
@natealbatros3848
@natealbatros3848 4 жыл бұрын
@@angelmendez-rivera351 yes I think
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
matan guedj What is your solution?
@aadfg0
@aadfg0 4 жыл бұрын
Recursion makes this easy. f(0) = 0, and for n>0 we define f(n) = (n mod 10) + f(floor(n/10)) = n - 10floor(n/10) + f(floor(n/10)). You can express this as a terminating series: f(n) = n - 9floor(n/10) - 9floor(floor(n/10)/10) - ... = n - 9(floor(n/10)+floor(n/10^2)+floor(n/10^3)+...).
@natealbatros3848
@natealbatros3848 4 жыл бұрын
@@angelmendez-rivera351 S(n) = sum(j = 1 to (1+floor(log_10(n)))) of floor((n-((10^j)*floor(n/10^j)))/10^(j-1))
@iambic-kilometer
@iambic-kilometer 4 жыл бұрын
Nice work, especially with zeta(3) appearing as a surprise at the end! Minor stylistic quibble: In analysis courses, epsilon typically stands for very small positive values. I would have made the upper limit (1 - epsilon) rather than epsilon when discussing the interchange of integral and summation.
@user-en5vj6vr2u
@user-en5vj6vr2u 4 жыл бұрын
Can you do calculus of variations like in the action principle
@djvalentedochp
@djvalentedochp 4 жыл бұрын
I LOVED THIS SHIT
@ilirdemiri2974
@ilirdemiri2974 4 жыл бұрын
Can you tell me reference of this problem?
@dirichlettt
@dirichlettt 4 жыл бұрын
I tried using Feynman's trick twice, seeing that cos(x)^t * ln(cos(x)) = partial(cos(x^t)) (I did the same with 1/sin(x)), but unfortunately it diverged at the very last few steps :(
@gamingstars8956
@gamingstars8956 4 жыл бұрын
We are back to integrals at last
@abhishekkp7121
@abhishekkp7121 4 жыл бұрын
How many ways can you integrate this bad boi
@Arnodorian6125
@Arnodorian6125 4 жыл бұрын
Dude pls do a live Q&A!!!
@sansamman4619
@sansamman4619 4 жыл бұрын
this is our purpose in life.
@tszhanglau5747
@tszhanglau5747 4 жыл бұрын
I thought i won't see papa do integarahls again lel
@stevencripe3987
@stevencripe3987 4 жыл бұрын
How much math do you generally need to know to solve the sorts of integrals on your channel? I am just starting Calculus III and I am completely lost haha. I of course can easily follow all your steps but oh lord I couldn't get there on my own.
@rokarus7658
@rokarus7658 4 жыл бұрын
None of the steps are hard in and of themselves; like proofs it's just experience working these types of problems to know which approaches to take.
@sdparsons
@sdparsons 4 жыл бұрын
360 noscopes are too e4sy losers. Then I see (Ta)n→(Si)n holy cow that move too sick
@valentinthieriot7506
@valentinthieriot7506 4 жыл бұрын
x=tan(t/2) vroum ?
@tgeofrey
@tgeofrey 4 жыл бұрын
Imperial mathematica
@antoine5571
@antoine5571 4 жыл бұрын
PRO GAMER MOVEEEE
@gym5959
@gym5959 2 жыл бұрын
sinx=e^t simplifies it in someway
@maqsudxorazm
@maqsudxorazm 4 жыл бұрын
Itʼs great
@maxwellsequation4887
@maxwellsequation4887 4 жыл бұрын
Yess, this is not a hahahaha video
@Dr.1.
@Dr.1. 2 жыл бұрын
niceeeee
@epicmorphism2240
@epicmorphism2240 4 жыл бұрын
Finally an integral… Edit: I‘ll post my way tomorrow
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
nice! :D
@oofusmcdoofus
@oofusmcdoofus 4 жыл бұрын
*Whats an infinity boy*
@RanEncounter
@RanEncounter 4 жыл бұрын
7:30 he is refering to the infinite sum he is pointing. Just a meme form to say anything infinite related.
@Alpha-gz6hk
@Alpha-gz6hk 4 жыл бұрын
Allauakba🤣
@carlosgiovanardi8197
@carlosgiovanardi8197 4 жыл бұрын
Nice integrahal!! And you are very red.
@justacutepotato2945
@justacutepotato2945 4 жыл бұрын
I'd like it when the answer was like a well known number.... that's probably cos i'm at like beginner level integration.
@hoodedR
@hoodedR 4 жыл бұрын
Sin >> squiggly stuff
@BoringExtrovert
@BoringExtrovert 4 жыл бұрын
الله أكبر again
@amirbannouri4642
@amirbannouri4642 4 жыл бұрын
why u always write the congruent symbol instead of '=' , that's really annoying for arithmethicc lovers !
@angelmendez-rivera351
@angelmendez-rivera351 4 жыл бұрын
It is a multipurpose symbol in math, like most symbols. It shouldn't be annoying if you understand how it works. It means "identically equal."
@KillianDefaoite
@KillianDefaoite 4 жыл бұрын
It is often used to mean a definition. Like, "let q=sin(t)" is often written with a triple equal sign because q=sin(t) is not a property of q that we have discovered, rather it is it's definition that we have simply stated. Sometimes ":=" is used for this purpose. The triple equals is often used in modular arithmetic as well, personally I find however that "p mod q = x" is a much better notation than the common " p == x (mod q)". ["==" Is standing in place for triple equals]
@futznation4230
@futznation4230 4 жыл бұрын
Should have written ln
@youtuberdisguiser6075
@youtuberdisguiser6075 4 жыл бұрын
Wie ist das Wetter :P
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
viel zu fucking warm ;_;
@youtuberdisguiser6075
@youtuberdisguiser6075 4 жыл бұрын
@@PapaFlammy69 feel you.
@trigon7015
@trigon7015 4 жыл бұрын
Latural nog
@Jeanstravels
@Jeanstravels 4 жыл бұрын
Damn iam 16 hahafjkl trying to understand this
@drjohnsmith5282
@drjohnsmith5282 4 жыл бұрын
Division by zero = allahu akbar!
@stefanoclaes1970
@stefanoclaes1970 4 жыл бұрын
Trig subs easy ??????
@trifonmadas2215
@trifonmadas2215 4 жыл бұрын
I am a bit perplexed watching this... People that can follow this are sitting "high" in the mountain of maths, and therefore will take little interest in this video People that are sitting "low" in the mountain of maths can hardly follow anything, and therefore also take little interest in this video So what is the target audience of this video? Any thoughts?
A  T h i c c and Spicy Logarithm Integral - Papa's Improvised Session #14
16:15
2 MAGIC SECRETS @denismagicshow @roman_magic
00:32
MasomkaMagic
Рет қаралды 33 МЛН
ROSÉ & Bruno Mars - APT. (Official Music Video)
02:54
ROSÉ
Рет қаралды 319 МЛН
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24
I tricked MrBeast into giving me his channel
00:58
Jesser
Рет қаралды 30 МЛН
An Integral Part of Happiness.
10:27
Flammable Maths
Рет қаралды 16 М.
The Brachistochrone, with Steven Strogatz
16:02
3Blue1Brown
Рет қаралды 1,3 МЛН
The Limit (do not use L'Hospital rule)
12:08
blackpenredpen
Рет қаралды 688 М.
Why there are no 3D complex numbers
15:21
Deeper Science
Рет қаралды 74 М.
A Savage Integral! Evaluating Ahmed's Integral using Feynman Integration
20:26
The Strange Physics Principle That Shapes Reality
32:44
Veritasium
Рет қаралды 5 МЛН
Destroying the Gaussian Integral using Papa Leibniz and Feynman
15:43
Flammable Maths
Рет қаралды 169 М.
2 MAGIC SECRETS @denismagicshow @roman_magic
00:32
MasomkaMagic
Рет қаралды 33 МЛН