Would love some more integrals using complex analysis
@cristofer27944 жыл бұрын
He hecho una imagen i made a picture of the integral resolved, a board and a known character of the loquendo videos of gta sa el tio gillipollas (the uncle asshole). imgur.com/a/FCvBh0n
@samirgeiger10424 жыл бұрын
Hey you said you would link something about your master thesis, but i cant seem to find it. It would interest me a great deal if you could maybe do that :D Grüße aus Mannheim ;)
@matron99364 жыл бұрын
Yay! Like back in the old days again.
@PackSciences4 жыл бұрын
I tried to do it by myself. I did: 1. Use Bioche's rules: (here, the Bioche's rules fail to get the sine as a valid change of variable, because it doesn't work well to predict Taylor expansions later in the problem). No conditions of the Bioche's rules is verified, therefore the change of variable is u = tan(x/2). cos(x) = (1-t²)/(1+t²), sin(x) = 2t/(1+t²), tan(x) = 2t/(1-t²), dx = 2dt / (1+t²), the bounds become respectively 0 and +infinity (it is not really a problem). One can note that log(cos(x)) = - 2 arctanh(t²) (I am not sure it's that helpful) The integral then becomes: int_0^infty of - 2 arctanh(t²) (log(2t) - log(1+t²)) 2 dt (1-t²)/ ((1-t²)*2t) = -2 int arctanh(t²) (log(2t) - log(1+t²))/(t) dt Then I realized arctanh(t²) isn't comfortable. -2 int arctanh(t²) (log(2t) - log(1+t²))/(t) dt = - int (log(1+t²) - log(1-t²))*(log(2t) - log(1+t²))/(t) dt Then I tried to distribute: - int (log(1+t²) - log(1-t²))*(log(2t) - log(1+t²))/(t) dt = int ((log(1+t²))² - log(1+t²)log(2t) + log(1-t²)log(2t) - log(1-t²)log(1+t²))/t dt = int ((log(1+t²))² + log((1-t²)/(1+t²))log(2t) - log(1-t²)log(1+t²))/t dt Then I say "ok reference integral time" so I hoped on WA and checked: int (log(1+t²))² dt = -Li3(t²+1) + Li2(t²+1) log(t²+1) + 1/2 log(-t²) log(t²+1) + C int log((1-t²)/(1+t²))log(2t)/t dt = A gigantic expression I am not going to copy here int log(1-t²)log(1+t²)/t dt = A gigantic expression I am not going to copy here either And then at that point I said, nevermind, let's go back to earlier expressions. -2 int arctanh(t²) (log(2t) - log(1+t²))/(t) dt I used the Taylor expansion of arctanh near zero. arctanh(t²) = sum_1^infty of t^(4k - 2)/(2k-1) We get: -2 int (log(2t) - log(1+t²)) sum t^(4k-3)/(2k-1) dt Interverting sum and integral works. I know that int x^n log(x) dx exists and has a closed formula for all n. I know that int x^n log(1+t²) dx does too so I said, ok good enough (there is still the problem of what to do with the sum over k, but I assumed it was going to simplify nicely). If anyone wants to pursue this solution, feel free, but it pure calculation.
@khemirimoez86614 жыл бұрын
Nerd alert nerd alert
@brucedienst75534 жыл бұрын
Me, In Calc 1/2 😳
@איתןגרינזייד4 жыл бұрын
I am just impressed that you actually wrote all of this
@debajyotisg4 жыл бұрын
This may seem trivial, but finding interesting integrals, and then solving them and presenting them in a captivating fashion takes time, effort and love for the art. Thank you for what you do! Love this series a lot.
@Yellowgary4 жыл бұрын
As soon as I saw that log(1-t^2)log(t)/t I knew Riemann was popping up somewhere. Very nice apery boi
@aleksandervadla48404 жыл бұрын
I tried u-sub and integration by parts. Needless to say, I am in severe pain right now.
@sansamman46194 жыл бұрын
0:43 : "Intermediate difficulty"
@Noam_.Menashe2 жыл бұрын
I substituted ln(sinx( and from there it was pretty simple.
@mudkip_btw4 жыл бұрын
Aahh yes we bac with the integarahlls, very noice one!
@mudkip_btw4 жыл бұрын
This one is really spicy :3
@nnniv4 жыл бұрын
0:17 you gotta make a video with that accent
@mdmohiuddin70894 жыл бұрын
I went all the way to the end of the video just to make sure that this is not a 17 min hahahahahaha video or something :3
@grantplunkett84104 жыл бұрын
Here at work on a Saturday morning, this makes it better Thanks Flammy
@reeeeeplease11784 жыл бұрын
Well you can also just let u=ln(sinx), du=1/tanx dx Using this sub, the integrand becomes u*ln(1-e^2u) and from there you can replace the ln by its series expansion (just like in the video) and after changing the order of summation and integral (again, just like the video), you end up with -1/2 * [Series from 1 to inf] of 1/n * [Integral from -inf to 0] u*e^(2n u) du Using integration by parts, the integral evaluates to just -1/4n^2 Multiplying this by the remaining -1/2n, you also end up with the series 1/8n^3 You can replace the ln by its series representation since |e^2x| < 1 for -inf < x < 0
@Noam_.Menashe2 жыл бұрын
Exactly what I did.
@tatjanagobold28104 жыл бұрын
Yeah finally integrahals to keep my brain fit during the holidays :D
@PapaFlammy694 жыл бұрын
:D
@gustavgadehebsgaard57274 жыл бұрын
I love your integheral videos. Thank you so much, papa
@ricardoparada53754 жыл бұрын
Man I was missing the old integral videos. This is very nice
@Roarshark124 жыл бұрын
Wow, this was one thoroughly-explained integration, thanks!!
@chan39124 жыл бұрын
Every day I wake up, hoping that it'll be a day without pain, but then I look at your videos, and my dreams are shattered.
@timenbobnar31484 жыл бұрын
omg boi i had a similar problem while studying for analizis exam ....1. year on faculty of Math and Pyzsics... keep up the good work tnx :)
@angelmendez-rivera3514 жыл бұрын
You can avoid needing to interchange the summation and integral with a limit as ε -> 1 by instead using the substitution earlier. Let -η = log(t), so -dη = dt/t, and t^(2k) = exp(-2kη). The interval of integration (0, 1) becomes (♾, 0), but the factor -1 from expanding log(1 - t^2) into -Σ{k > 0, x^k/k} transforms the interval into (0, ♾). The integrand simplifies to η·Σ{k > 0, exp(-2kη)/k}. Now, interchanging the summation and the integral is trivial, because there is no singularity, and uniform convergence is more obvious.
@DendrocnideMoroides2 жыл бұрын
just press Alt+236 to get this infinity sign: ∞
@JuanLopez-rl7ry4 жыл бұрын
I did this a little easier but mostly the same method int_0^(π) ln(cos(x))*ln(sin(x))*cos(x)/sin(x) dx Step 1) Let's convert cos(x) = sqrt(1 - sin^2(x)) which is valid between 0 and pi, which we are happy int_0^(π/2) ln(sqrt(1 - sin^2(x)))*ln(sin(x))*cos(x)/sin(x) dx = 1/2 * int_0^(π/2) ln(1 - sin^2(x))*ln(sin(x))*cos(x)/sin(x) dx ; Step 2) Make u = sin(x); du = cos(x) dx; a = sin(0) = 0; b = sin(π/2) = 1; 1/2 * int_(0)^(1) ln(1 - u^2)*ln(u)/u du; Step 3) Make z = ln(u); dz = 1/u du; a = -∞; b = 0; u = exp(z); 1/2 * int_(-∞)^(0) z* ln(1 - exp(2z)) dz; Step 4) Let y = -z; dy = -dz; a = ∞; b = 0; 1/2 * int_(∞)^(0) y* ln(1 - exp(-2y)) dy = -1/2 * int_(0)^(∞) y*ln(1 - exp(-2y)) dy ; We know that ln(1 - q) = sum_(n = 1)^(∞) (-1)(q^n)/n; Step 5) Let q = exp(-2y) ln(1 - exp(-2y)) = sum_(n = 1)^(∞) (-1)(exp(-2y*n))/n; which is valid when (0 < y) which is excellent because that is bounds of the integral. Step 6) Plug in the summation -1/2 * int_(0)^(∞) y*sum_(n = 1)^(∞) (-1)(exp(-2y*n))/n dy; 1/2 * sum_(n = 1)^(∞) {(1/n)*[int_(0)^(infinity) (y)(exp(-2y*n)) dy]} Step 7) Integration by parts; u = y; du = dy; dv = exp(-2y*n) dy; v = exp(-2y*n)/(-2n); int (y)(exp(-2y*n))/n dy = -y*exp(-2y*n)/(2n) + int exp(-2y*n)/(2n) dy = (-y*exp(-2y*n)/(2n)) - (exp(-2y*n)/(4*(n^2))); int_(0)^(∞) (y)(exp(-2y*n))/n dy = [limit y->(∞) [(-y*exp(-2y*n)/(2n)) - (exp(-2y*n)/(4*(n^2)))]] - [limit y->(0) [(-y*exp(-2y*n)/(2n)) - (exp(-2y*n)/(4*(n^2)))]] int_(0)^(∞) (y)(exp(-2y*n))/n dy = 1/(4*(n^2)) when n > 0 which is always true in this case as the summations goes from (n => 1). Step 8) plug back into the summation 1/2 * sum_(n = 1)^(∞) [(1/n)*(1/(4*(n^2)))] = 1/8 * sum_(n = 1)^(∞) (1/n^3);
@abdusabdud82184 жыл бұрын
You are my best math teacher because I like this types of vdo
@jakubpuchatek30294 жыл бұрын
finally papa doin some integaralz
@antonienewman93794 жыл бұрын
Finally integrals ..
@let17424 жыл бұрын
damn this is so impressive when you do it
@PapaFlammy694 жыл бұрын
:)
@HAL-oj4jb4 жыл бұрын
Solving integarals really is your superpower
@linkeshifttaste14554 жыл бұрын
Very nice!
@lucascruz39774 жыл бұрын
Is there any book where I can find similar problems?
@tgx35294 жыл бұрын
If I use the substitution log(sin x)= t, then the substitution t=-v, I get the integral from 0 till infinity from (1/2)* v* log(1-exp(-2v))dv, I can write log(1-exp(-2v)) as series -exp(-2v(n+1))/(n+1), functions fn(v) =v*exp(-2v(n+1))/(n+1) convergent uniformly, lim sup |fn(v)-f(v)|=lim |[1/(2e*(n+1)^2] |=0, (functions fn(v)-f(v) have supremum for v=1/2(n+1), there is f(v)=0), finally I will get the same result .
@WhattheHectogon4 жыл бұрын
infniti buoy
@harsh_t4 жыл бұрын
:)
@samirgeiger10424 жыл бұрын
Is it neccesarry to turn the log(t)t^(2k-1) part into the gamma function? wouldnt intgeration by parts be way easier?
@famillemagnan13134 жыл бұрын
Samir Geiger of course
@natealbatros38484 жыл бұрын
Hey papa here's maybe a nice little question you might like. Create a function that gives out the sum of its numbers (for example f(2541)=2+5+4+1=12) I did find a solution to it but want to see if you have a more elegant solution.
@angelmendez-rivera3514 жыл бұрын
You mean a function that gives that sum of the digits in the standard decimal representation of a number?
@natealbatros38484 жыл бұрын
@@angelmendez-rivera351 yes I think
@angelmendez-rivera3514 жыл бұрын
matan guedj What is your solution?
@aadfg04 жыл бұрын
Recursion makes this easy. f(0) = 0, and for n>0 we define f(n) = (n mod 10) + f(floor(n/10)) = n - 10floor(n/10) + f(floor(n/10)). You can express this as a terminating series: f(n) = n - 9floor(n/10) - 9floor(floor(n/10)/10) - ... = n - 9(floor(n/10)+floor(n/10^2)+floor(n/10^3)+...).
@natealbatros38484 жыл бұрын
@@angelmendez-rivera351 S(n) = sum(j = 1 to (1+floor(log_10(n)))) of floor((n-((10^j)*floor(n/10^j)))/10^(j-1))
@iambic-kilometer4 жыл бұрын
Nice work, especially with zeta(3) appearing as a surprise at the end! Minor stylistic quibble: In analysis courses, epsilon typically stands for very small positive values. I would have made the upper limit (1 - epsilon) rather than epsilon when discussing the interchange of integral and summation.
@user-en5vj6vr2u4 жыл бұрын
Can you do calculus of variations like in the action principle
@djvalentedochp4 жыл бұрын
I LOVED THIS SHIT
@ilirdemiri29744 жыл бұрын
Can you tell me reference of this problem?
@dirichlettt4 жыл бұрын
I tried using Feynman's trick twice, seeing that cos(x)^t * ln(cos(x)) = partial(cos(x^t)) (I did the same with 1/sin(x)), but unfortunately it diverged at the very last few steps :(
@gamingstars89564 жыл бұрын
We are back to integrals at last
@abhishekkp71214 жыл бұрын
How many ways can you integrate this bad boi
@Arnodorian61254 жыл бұрын
Dude pls do a live Q&A!!!
@sansamman46194 жыл бұрын
this is our purpose in life.
@tszhanglau57474 жыл бұрын
I thought i won't see papa do integarahls again lel
@stevencripe39874 жыл бұрын
How much math do you generally need to know to solve the sorts of integrals on your channel? I am just starting Calculus III and I am completely lost haha. I of course can easily follow all your steps but oh lord I couldn't get there on my own.
@rokarus76584 жыл бұрын
None of the steps are hard in and of themselves; like proofs it's just experience working these types of problems to know which approaches to take.
@sdparsons4 жыл бұрын
360 noscopes are too e4sy losers. Then I see (Ta)n→(Si)n holy cow that move too sick
@valentinthieriot75064 жыл бұрын
x=tan(t/2) vroum ?
@tgeofrey4 жыл бұрын
Imperial mathematica
@antoine55714 жыл бұрын
PRO GAMER MOVEEEE
@gym59592 жыл бұрын
sinx=e^t simplifies it in someway
@maqsudxorazm4 жыл бұрын
Itʼs great
@maxwellsequation48874 жыл бұрын
Yess, this is not a hahahaha video
@Dr.1.2 жыл бұрын
niceeeee
@epicmorphism22404 жыл бұрын
Finally an integral… Edit: I‘ll post my way tomorrow
@PapaFlammy694 жыл бұрын
nice! :D
@oofusmcdoofus4 жыл бұрын
*Whats an infinity boy*
@RanEncounter4 жыл бұрын
7:30 he is refering to the infinite sum he is pointing. Just a meme form to say anything infinite related.
@Alpha-gz6hk4 жыл бұрын
Allauakba🤣
@carlosgiovanardi81974 жыл бұрын
Nice integrahal!! And you are very red.
@justacutepotato29454 жыл бұрын
I'd like it when the answer was like a well known number.... that's probably cos i'm at like beginner level integration.
@hoodedR4 жыл бұрын
Sin >> squiggly stuff
@BoringExtrovert4 жыл бұрын
الله أكبر again
@amirbannouri46424 жыл бұрын
why u always write the congruent symbol instead of '=' , that's really annoying for arithmethicc lovers !
@angelmendez-rivera3514 жыл бұрын
It is a multipurpose symbol in math, like most symbols. It shouldn't be annoying if you understand how it works. It means "identically equal."
@KillianDefaoite4 жыл бұрын
It is often used to mean a definition. Like, "let q=sin(t)" is often written with a triple equal sign because q=sin(t) is not a property of q that we have discovered, rather it is it's definition that we have simply stated. Sometimes ":=" is used for this purpose. The triple equals is often used in modular arithmetic as well, personally I find however that "p mod q = x" is a much better notation than the common " p == x (mod q)". ["==" Is standing in place for triple equals]
@futznation42304 жыл бұрын
Should have written ln
@youtuberdisguiser60754 жыл бұрын
Wie ist das Wetter :P
@PapaFlammy694 жыл бұрын
viel zu fucking warm ;_;
@youtuberdisguiser60754 жыл бұрын
@@PapaFlammy69 feel you.
@trigon70154 жыл бұрын
Latural nog
@Jeanstravels4 жыл бұрын
Damn iam 16 hahafjkl trying to understand this
@drjohnsmith52824 жыл бұрын
Division by zero = allahu akbar!
@stefanoclaes19704 жыл бұрын
Trig subs easy ??????
@trifonmadas22154 жыл бұрын
I am a bit perplexed watching this... People that can follow this are sitting "high" in the mountain of maths, and therefore will take little interest in this video People that are sitting "low" in the mountain of maths can hardly follow anything, and therefore also take little interest in this video So what is the target audience of this video? Any thoughts?