Perceptron Learning Algorithm in Machine Learning | Neural Networks

  Рет қаралды 165,537

ThinkX Academy

ThinkX Academy

Күн бұрын

Пікірлер: 64
@srimannarayanaiyengar8914
@srimannarayanaiyengar8914 3 жыл бұрын
Excellent explanation my friend . I loved it .I am CSE professor of age 61 years . May god bless you .Please provide vedios like this so that many of student community can learn. May godess saraswathi bless you for your bright future.
@ThinkXAcademy
@ThinkXAcademy 3 жыл бұрын
Thank you so much for such kind words i will keep creating more videos to help student community ✅😄
@ninasirsi2340
@ninasirsi2340 Жыл бұрын
Sir at age of 61 what will you do by learning perception are you going to teach them in your college?
@WxK_Riku
@WxK_Riku 10 ай бұрын
​@@ninasirsi2340 he said hes a Cse PROFESSOR
@richardnorthiii3374
@richardnorthiii3374 10 ай бұрын
Finally a clear explanation. Thank you.
@ajaypavushetti8787
@ajaypavushetti8787 8 ай бұрын
😂
@DanTheTan
@DanTheTan 4 ай бұрын
Thank, helped alot! Couldn't understand a symbole before this, now I feel like im on the right track!
@MlokothoLanga8
@MlokothoLanga8 3 ай бұрын
Very nice and simple explanation, thanks a lot
@shashwatgandhi4895
@shashwatgandhi4895 2 жыл бұрын
Correct me if I am wrong. The weight changing algorithm is increasing the weights if the target value is higher than the actual value and vice versa. That will make the output in the next iteration closer to the target output BUT it will not be that way if suppose the inputs (xi) are say always negative. In that case the weight changing has to be modified that is if the input was negative then the sign of delta weight should be reversed. Eg. : x1 = -1, w1 = 1 -> x1*w1 = -1 (actual output) , sigmoid(-1) -> 0 target output = 1 delta weight = (n) * (1) Assuming n to be 0.1 then delta weight = 0.1 So the new weight becomes -> w1 = w1 + delta weight w1 = 1.1 But now running it again we see=> x1 = -1, w1 = 1.1 -> x1*w1 = -1.1 (actual output) sigmoid(-1.1) -> 0 This makes the algorithm even worse now. So we should have made sure that as the input was negative rather than adding the delta weight we should have subtracted it. so w1 = w1 - delta weight = 1 - 0.1 => 0.9 x1 = -1 , w1 = 0.9 => x1*w1 = -0.9 sigmoid(-0.9) = 0
@ThinkXAcademy
@ThinkXAcademy 2 жыл бұрын
yes for negative weights we need to handle that case
@riki2404
@riki2404 3 жыл бұрын
simply amazing explanation . Thanks a lot.
@ThinkXAcademy
@ThinkXAcademy 3 жыл бұрын
Thanks for support✔️These comments make my day😄
@mauryaashish1865
@mauryaashish1865 Жыл бұрын
Your way of explanation is so simple and organized that any one can understand. I enjoyed learning Perceptron, you are amazing educator. Thank you for such content. :)
@anvayawalgaonkar4119
@anvayawalgaonkar4119 3 жыл бұрын
Explained in a very easy way..please share the basics of perceptron on jupyter notebook like real hands on experience
@ThinkXAcademy
@ThinkXAcademy 3 жыл бұрын
Will work on it 😄
@rangeenbilla
@rangeenbilla Жыл бұрын
finally understood after hoping so many videos. W!
@jeremyyd1258
@jeremyyd1258 Жыл бұрын
Thank you SO much for such a clear explanation, with the visuals to support it. I really appreciate it!
@bubiubcyufg-zc4ui
@bubiubcyufg-zc4ui 7 ай бұрын
it was super useful for me thank you my friend!
@bhavikprajapati2614
@bhavikprajapati2614 Жыл бұрын
How can a set of data be classified using a simple perceptron? Using a simple perceptron with weights w0, w1 , and w2 as −1, 2, and 1, respectively, classify data points (3,4); (5, 2); (1, −3); (−8, −3); (−3, 0).
@harshchindarkar5887
@harshchindarkar5887 3 жыл бұрын
Thanks man now concept is cleared for me...
@ThinkXAcademy
@ThinkXAcademy 3 жыл бұрын
Great👍🏻Please share our videos to help this channel grow🌟
@srimannarayanaiyengar8914
@srimannarayanaiyengar8914 3 жыл бұрын
please post Multilayer perception model with an example
@ThinkXAcademy
@ThinkXAcademy 3 жыл бұрын
Sure sir
@csadhi
@csadhi 2 жыл бұрын
I have gone through few videos about the topic and did not get the clear understanding. But your video was very clear and examples were very simple to understand, great job and keep up the good job. A big thanks for explaining things clearly.
@ThinkXAcademy
@ThinkXAcademy 2 жыл бұрын
Thanks😀 Do share my videos with other students to help this channel grow🌟
@slainiae
@slainiae Жыл бұрын
Excellent explanation👍
@shashwatgandhi4895
@shashwatgandhi4895 2 жыл бұрын
Wouldn't all the weights be equal after all the iteration as the delta we are adding to each of the weight is always the same for all in any iteration. (Assuming the weights were same at the start) ?
@dragster100
@dragster100 Жыл бұрын
I think the error term of (yi - yi bar) takes care of that. As the iterations go your error term will also becomes smaller and smaller until it converges eventually.
@vamsipaidupalli7904
@vamsipaidupalli7904 3 жыл бұрын
Nice 👌 keep it up sir
@ThinkXAcademy
@ThinkXAcademy 3 жыл бұрын
Keep Learning 💯
@veeraprathap5774
@veeraprathap5774 5 ай бұрын
I have a question: Does the perceptron use a sigmoid function as I know. Perceptron is using the step function. Logistic Regression uses the step function.If I am wrong correct me.
@annesarahC137
@annesarahC137 4 ай бұрын
Very clear.
@Babygirl_S
@Babygirl_S 2 жыл бұрын
This was so good! Thank you very much.
@ThinkXAcademy
@ThinkXAcademy 2 жыл бұрын
Share and Like💯
@sherlockholmes2752
@sherlockholmes2752 2 жыл бұрын
Very good explanation!!
@ThinkXAcademy
@ThinkXAcademy 2 жыл бұрын
Thanks😄 Share our videos to help this channel grow💯
@dashsingh30095
@dashsingh30095 3 жыл бұрын
Very well explained 😀😀
@ThinkXAcademy
@ThinkXAcademy 3 жыл бұрын
Thanks..please share my videos to help me grow😄
@amitblizer4567
@amitblizer4567 Жыл бұрын
Very clearly explained video!, thank you!
@kumarsourabh5862
@kumarsourabh5862 3 жыл бұрын
very nice explanation ..thank you
@ThinkXAcademy
@ThinkXAcademy 3 жыл бұрын
Like and share our content to support us😄
@basab4797
@basab4797 Жыл бұрын
Really awesome
@lowLevelCoder99
@lowLevelCoder99 5 ай бұрын
Sir where is your tutorial on Activation functions?
@ROBERTAGAROFANO-j3b
@ROBERTAGAROFANO-j3b Жыл бұрын
exellent!!
@samarthagarwal6929
@samarthagarwal6929 7 ай бұрын
you forgot to multiply xi in the formula for calculating new weight.
@simrakhan6346
@simrakhan6346 6 күн бұрын
yes, i noticed that too.
@fiilixwonder7675
@fiilixwonder7675 2 жыл бұрын
Thank you 👍
@ThinkXAcademy
@ThinkXAcademy 2 жыл бұрын
Share and Subscribe😄
@amnshumansunil3371
@amnshumansunil3371 3 жыл бұрын
dude you're amazing!! keep up the good job :)
@ThinkXAcademy
@ThinkXAcademy 3 жыл бұрын
Thank you😀 Please share to help my channel reach to more students✌🏻
@kabirbaghel8835
@kabirbaghel8835 2 жыл бұрын
amazing 10/10
@ThinkXAcademy
@ThinkXAcademy 2 жыл бұрын
Share and Subscribe 😃
@chamithdilshan3547
@chamithdilshan3547 2 жыл бұрын
Thank you!
@ThinkXAcademy
@ThinkXAcademy 2 жыл бұрын
Welcome 🌟 Share it with other students also👍
@mrkhan3188
@mrkhan3188 3 жыл бұрын
Thanks dude .... I have exam tmrw
@ThinkXAcademy
@ThinkXAcademy 3 жыл бұрын
Best of luck bro💯
@praveenchristopher7776
@praveenchristopher7776 2 жыл бұрын
Thankyou for the very clear explanation, it was was a pleasure to learn. I have a question on the activation function, x.w+b, since we are using a squashing function should it not be x.w+b < 0.5 for 0, and x.w+b > 0.5 for it to be classified as 1. Thanks again
@ThinkXAcademy
@ThinkXAcademy 2 жыл бұрын
No, I have rechecked the conditions, it is correct in the video.
@decodingrules2494
@decodingrules2494 Жыл бұрын
Thank you man
@mo-ry5je
@mo-ry5je Жыл бұрын
Thank you
@meetpatel1011
@meetpatel1011 11 ай бұрын
Thanks
@mih2965
@mih2965 Жыл бұрын
Basically.
@sharongiftyk4120
@sharongiftyk4120 5 ай бұрын
🥹tnx
Implementation of AND function using Perceptron Model
20:32
ThinkX Academy
Рет қаралды 67 М.
Perceptron | Neural Networks
8:47
First Principles of Computer Vision
Рет қаралды 89 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 6 МЛН
If people acted like cats 🙀😹 LeoNata family #shorts
00:22
LeoNata Family
Рет қаралды 46 МЛН
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 113 МЛН
How To Use Sora Turbo For Beginners
8:20
Corbin Brown
Рет қаралды 1,1 М.
#25 The Perceptron and The Perceptron training rule |ML|
8:17
Trouble- Free
Рет қаралды 289 М.
But what is a neural network? | Deep learning chapter 1
18:40
3Blue1Brown
Рет қаралды 18 МЛН
What is a Perceptron Learning Algorithm - Step By Step Clearly Explained using Python
15:14
Perceptron Learning Algorithm
22:48
IIT Madras - B.S. Degree Programme
Рет қаралды 7 М.
Perceptron
13:22
ritvikmath
Рет қаралды 297 М.
Perceptron Algorithm with Code Example - ML for beginners!
8:55
Python Simplified
Рет қаралды 114 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 6 МЛН