Performance Metrics, Accuracy,Precision,Recall And F-Beta Score Explained In Hindi|Machine Learning

  Рет қаралды 119,943

Krish Naik Hindi

Krish Naik Hindi

Күн бұрын

Пікірлер: 87
@sidnoga
@sidnoga 2 жыл бұрын
Sir, I am so happy for the students who don't have a good financial condition or because of English, won't be able to learn Data Science. This channel brings new hope for them, You are an inspiration for us.
@muhammaduzair9779
@muhammaduzair9779 Күн бұрын
Dear sir great teaching method.You deserve lot of Subscribers ❤
@jitendrarathod6246
@jitendrarathod6246 Жыл бұрын
First time I could able to understand actual use of metrics after learning for 3 years 😂..nice
@SubhajitBarat
@SubhajitBarat Жыл бұрын
Its very good to know that you also answer immediately along with the questions which is a good way of teaching technique.
@rajeevnayantripathi5370
@rajeevnayantripathi5370 4 ай бұрын
1. Start with Recall: Focus on maximizing recall to ensure you capture as many potential crashes as possible. The primary goal is to ensure that as many actual crashes as possible are detected. Missing a crash (high FN) could lead to significant financial losses . By maximizing recall, you reduce the risk of overlooking a critical downturn. This helps in avoiding missed opportunities. 2. Optimize Precision: Once you’ve achieved a reasonable recall, work on improving precision to reduce the number of false positives. This ensures that when your model predicts a crash, it is more likely to be accurate, thus reducing unnecessary panic or overreaction in the market.
@sahiljamadar7324
@sahiljamadar7324 9 ай бұрын
This helped to cover the evaluation metrics quickly in less time, definitely a nice video to see before interview. Thanks the teaching in simple manner.
@pritamrajbhar9504
@pritamrajbhar9504 6 ай бұрын
this is the only video that gives detailed and simple explanation in 23 min.
@priyanshusinha1837
@priyanshusinha1837 4 ай бұрын
for the first time, I got feel in Machine learning. THANK YOU SO MUCH.
@8149272052
@8149272052 6 ай бұрын
thankyou so much krish sir for making our concepts crystal clear...again thankyou ...doing hardwork for us
@mahajav
@mahajav 11 ай бұрын
Excellent, got a very good understanding of all the terms with proper examples
@optimizedintroverts668
@optimizedintroverts668 6 ай бұрын
Explained so wonderfully, made me understand fully..
@Otaku-Chan01
@Otaku-Chan01 8 ай бұрын
Great explanation sir, as well as great examples. I was just looking for your videos in order to understand this concept. Couldn't find this topic in English so came here.
@SharpKnife523
@SharpKnife523 Жыл бұрын
Best way to make dumb people like me understand the performance measurement of ML models. I was always confused between Recall and Precision. Kudos to you Krish!!
@pintukumar-vo3yd
@pintukumar-vo3yd Жыл бұрын
Thanks sir , first time I got clean on this topic
@muhammadzohaib4343
@muhammadzohaib4343 Жыл бұрын
Sir you are great, Love from Pakistan
@justinjosechitteth4163
@justinjosechitteth4163 Жыл бұрын
Bhai great video thankyou for the contribution ..
@shahfaissal2945
@shahfaissal2945 2 жыл бұрын
I love the way you teach but everything is in bits and pieces . If there was a single playlist for data science with video numbers would have been great to follow .
@SatyendraJaiswalsattu
@SatyendraJaiswalsattu 9 ай бұрын
Crystal clear 👍
@MuhammadKhan-ok3hf
@MuhammadKhan-ok3hf Жыл бұрын
Excellent, best wishes ever, Thanks
@anirudhjayant9557
@anirudhjayant9557 Жыл бұрын
Best explanation one can expect!!! Excellent.
@abhishekpurohit3894
@abhishekpurohit3894 5 ай бұрын
superb explanation.
@sekharsamanta6266
@sekharsamanta6266 Ай бұрын
Just Awesome!
@AmeliaMelia-tj3kc
@AmeliaMelia-tj3kc 4 ай бұрын
great teacher ever'
@sohampatell
@sohampatell Ай бұрын
In H{beta} score the denominator 's {beta}^2 should be only multiplied to precision and not to whole of prcision+recall
@sidnoga
@sidnoga 2 жыл бұрын
Sir, please make an end-to-end Machine Learning project till deployment in Hindi. It will be very helpful for us,
@vibhutyagi8787
@vibhutyagi8787 2 жыл бұрын
Your videos are always helpful sir 🙌🏼
@blaze102
@blaze102 24 күн бұрын
18:57 recall is important
@javedalam0_786
@javedalam0_786 7 ай бұрын
Amazing tutorial I wish I had watched it before my exams 🫡
@abhilogy3322
@abhilogy3322 Жыл бұрын
absolute clear sir.
@hari_1357
@hari_1357 2 жыл бұрын
Amazing sir thanks a lot
@shadiyapp5552
@shadiyapp5552 2 жыл бұрын
Thank you sir ♥️
@satyamraj2039
@satyamraj2039 3 ай бұрын
great video
@utsavraj224
@utsavraj224 7 ай бұрын
Make it for multiclass classification
@arjunhaldankar219
@arjunhaldankar219 Жыл бұрын
sir apne beta value kaise decide ki idhar 1 ya 0.5 ... i mean why for FP it is 0.5
@WellPlayedGamingYT
@WellPlayedGamingYT Жыл бұрын
06:00 Sir You forget to cut this 😄
@shahmohammadmahdihasan324
@shahmohammadmahdihasan324 Жыл бұрын
Thank you so much
@Mohd_Raavi
@Mohd_Raavi Жыл бұрын
Sir make more videos and keet it up
@jitendergupta2240
@jitendergupta2240 2 жыл бұрын
theory toh samajh aa gaya, practical ke liye kaha se refer kare? Koi paid video hai kya??
@h44r96
@h44r96 Жыл бұрын
Yes same for me
@nightwing4090
@nightwing4090 8 ай бұрын
Sir arent all these metrics then meant just for logistic regression, if we use LR or smth in which we have multiplie options confision matrix wont work ?
@SyedSamar-ze8jk
@SyedSamar-ze8jk 8 ай бұрын
Well done
@umeshsamal165
@umeshsamal165 2 жыл бұрын
Very amazing
@justinjosechitteth4163
@justinjosechitteth4163 Жыл бұрын
Bhai In precision is not the TP from all the Actual value(y) or is it from predicted value(y^) ?
@hari_1357
@hari_1357 2 жыл бұрын
Sir if i join your full stack data science course , will you teach in the same way as in this video?? I think you have taught very well !!
@krishnaikhindi
@krishnaikhindi 2 жыл бұрын
Yes sir
@RudraSingh-pb5ls
@RudraSingh-pb5ls 2 жыл бұрын
@@krishnaikhindi in this video which drawingboard tool are you using ? Is it Microsoft whiteboard ?
@RiffswithMohit
@RiffswithMohit 2 жыл бұрын
18:13 sir is case me to ager model sabhi ko cancer bata de to bhi ye best model rahega aapke logic ke hisab se q ki as u said person at lest test to karwa lega :P this question ask in interview I'm not able to answer.
@prakashraushan2621
@prakashraushan2621 Жыл бұрын
is case me although model ka accuracy badhega par precision kam ho jayega, bcoz FP + TP ka sum badhega. aur logically hm soche ki mera model sabko cancer patient bta dega to sare log ja kr check krwane lgenge, par hmne model phir bannya hi kis liye tha? taki isis gap ko kam kr ske right..............
@kshitijsahdev4480
@kshitijsahdev4480 10 ай бұрын
Type 1 and Type 2 error search karke uske baare me padho. Ek aise insaan ko, jise cancer nahi hai, usse ye bolna ki tumhe cancer hai, ye utna bada error nahi hai jitna bada error hoga ek aise insaan ko, jise cancer hai, usse ye bolna ki tumhe cancer nahi hai
@rajeevnayantripathi5370
@rajeevnayantripathi5370 4 ай бұрын
@@prakashraushan2621 nice explanation
@rajeevnayantripathi5370
@rajeevnayantripathi5370 4 ай бұрын
@@kshitijsahdev4480 nice explanation
@netviz8673
@netviz8673 3 ай бұрын
in confusion matrix the x axis or top line occupies actual values while the y axis or the vertical line occupies the prediction value. Accuracy is not used in case of imbalanced data eg 0:900 and 1:100 ie no of zeros are 900 and no of ones is 100. This is imbalanced data set. If we used accuracy in imbalanced data set then our accuracy will be high already which will give false signal. Suppose using this imbalanced data set we create a model that only generates 0 as the output then this model using the formula given TP+TN/all will give 90% accuracy as all TN will be hit and all TP will be zero but due to imbalance the accuracy will be high. Hence a differnet performance metric is used in case of imbalanced data set which are precision and recall. Precision is TP/(TP+FP) like spam email model and Recall is TP/(TP+FN) like cancer detection model. And in case of stock market prediction when we need to reduce both false positive and false negative then in that case f-beta score is used. When both false pos and false nef are importabt then beta=1 (harmonic mean) ie 2*(PR)/(P+R) and when FP is more imp than FN beta=0.5 and when FN is more imp than FP then beta=2 is taken.
@justinjosechitteth4163
@justinjosechitteth4163 Жыл бұрын
so bhai what is a proper example of a balance data set, is there any method/algorithm to balance these data set ? Also if we get unbalanced dataset does it mean the accuracy is low
@rajeevnayantripathi5370
@rajeevnayantripathi5370 4 ай бұрын
In an imbalanced dataset, it's not accurate to say that the model's accuracy will definitely be low or high. What we can say is that accuracy alone is not a reliable metric for evaluating performance in such cases.
@__________________________6910
@__________________________6910 2 жыл бұрын
Hello krish sir can u tell me which drawing app or software you are using ?
@krishnaikhindi
@krishnaikhindi 2 жыл бұрын
Scrible available in Microsoft store
@__________________________6910
@__________________________6910 2 жыл бұрын
@@krishnaikhindi thanks
@piyushshukla238
@piyushshukla238 2 жыл бұрын
Hi krish i m fresher in data science and i want to know how will i get the job?
@ng23neeraj
@ng23neeraj 2 жыл бұрын
sir, provide pdf file for this video lecture.
@suvendudey8254
@suvendudey8254 Жыл бұрын
Tomorrow Stock market is going to crash that scenario i use recall bcz when (actually stock market are crush but model says it not crush so i use) plz sir corrrect or not reply me?
@rajeevnayantripathi5370
@rajeevnayantripathi5370 4 ай бұрын
1. Start with Recall: Focus on maximizing recall to ensure you capture as many potential crashes as possible. The primary goal is to ensure that as many actual crashes as possible are detected. Missing a crash (high FN) could lead to significant financial losses . By maximizing recall, you reduce the risk of overlooking a critical downturn. This helps in avoiding missed opportunities. 2. Optimize Precision: Once you’ve achieved a reasonable recall, work on improving precision to reduce the number of false positives. This ensures that when your model predicts a crash, it is more likely to be accurate, thus reducing unnecessary panic or overreaction in the market.
@justinjosechitteth4163
@justinjosechitteth4163 Жыл бұрын
Bhai what is support in the F beta score ?
@prakashraushan2621
@prakashraushan2621 Жыл бұрын
It's simply the number of instances in the matrix. I.e., the count of TP, TN, FP, FN
@faizannaviwala163
@faizannaviwala163 8 ай бұрын
where r this lecture notes
@Arkestra_Moves
@Arkestra_Moves 2 жыл бұрын
Imbalance dataset miss ho gya video me lagging k karan
@jasanimihir4994
@jasanimihir4994 2 жыл бұрын
Hello sir. We use precision when FP is important. Then what is the need of F beta score like we use beta=0.5 when FP>FN. could you please explain it.
@krishnaikhindi
@krishnaikhindi 2 жыл бұрын
We can use any one of them
@jasanimihir4994
@jasanimihir4994 2 жыл бұрын
@@krishnaikhindi thank you for the replying and clearing my doubt. Great teacher, great teaching skills and great person also❤️😇
@ghanashyampatil6499
@ghanashyampatil6499 2 жыл бұрын
F 1 score and f beta score same he kya
@SohamAgarwal-gs8jv
@SohamAgarwal-gs8jv 2 ай бұрын
f1 score is basically f beta where beta=1
@prakharjauhari2161
@prakharjauhari2161 Жыл бұрын
Hello sir Sir apna video ko ku bda diye timing08:34 pe
@Creative_Minds185
@Creative_Minds185 2 ай бұрын
precision
@aparnakumari-uw3op
@aparnakumari-uw3op Жыл бұрын
But if they asked why I gave more importance to FP or FN....why did I gave them equally importantance ...then what will be the answer
@NaveenSomalapuri
@NaveenSomalapuri Жыл бұрын
Is has a small correction which is rows represent actual class and columns represent prediction class
@mujtwaali
@mujtwaali Жыл бұрын
recall
@OmerQureshi-n4t
@OmerQureshi-n4t 10 ай бұрын
There is a mistake in F Beta score formula
@rajeevnayantripathi5370
@rajeevnayantripathi5370 4 ай бұрын
( (1 + Beta^2) *(precision * recall) ) /(Beta * precision + recall)
@gautamjain9232
@gautamjain9232 Жыл бұрын
actually in confusion matrix you mentioned wrong FP and FN just swap it then it is correct sir [1,0] = FN and [0,1] is FP
@shivamsingh7028
@shivamsingh7028 Жыл бұрын
iska answer
@BharatDhungana-n4s
@BharatDhungana-n4s 10 ай бұрын
pERFECT
@jannatunferdous103
@jannatunferdous103 Жыл бұрын
Sir what if Precision score and Recall score both become 0? Thanks
@DataScienceCenterbyVikasKumar
@DataScienceCenterbyVikasKumar 3 ай бұрын
Confusion Matrix: kzbin.info/www/bejne/fIfPoqyBf7Kbr5Y
@shobhangiverma7090
@shobhangiverma7090 7 ай бұрын
👍
@Abaan9350
@Abaan9350 16 күн бұрын
maza nai aaya
@mihirparmar9441
@mihirparmar9441 3 ай бұрын
Thank you sir😊
Support Vector Machine Classifier Indepth Intution In Hindi| Krish Naik
25:24
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
ROC and AUC, Clearly Explained!
16:17
StatQuest with Josh Starmer
Рет қаралды 1,5 МЛН
Training Data Vs Test Data Vs Validation Data| Krish Naik
14:41
Krish Naik Hindi
Рет қаралды 61 М.
Evaluation Metrics for Machine Learning Models | Full Course
50:07
Analytics Vidhya
Рет қаралды 10 М.
Machine Learning Fundamentals: The Confusion Matrix
7:13
StatQuest with Josh Starmer
Рет қаралды 740 М.
Hindi-Types Of Cross Validation In Machine Learning|Krish Naik
18:54
Krish Naik Hindi
Рет қаралды 40 М.
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.