Sir, I am so happy for the students who don't have a good financial condition or because of English, won't be able to learn Data Science. This channel brings new hope for them, You are an inspiration for us.
@muhammaduzair9779Күн бұрын
Dear sir great teaching method.You deserve lot of Subscribers ❤
@jitendrarathod6246 Жыл бұрын
First time I could able to understand actual use of metrics after learning for 3 years 😂..nice
@SubhajitBarat Жыл бұрын
Its very good to know that you also answer immediately along with the questions which is a good way of teaching technique.
@rajeevnayantripathi53704 ай бұрын
1. Start with Recall: Focus on maximizing recall to ensure you capture as many potential crashes as possible. The primary goal is to ensure that as many actual crashes as possible are detected. Missing a crash (high FN) could lead to significant financial losses . By maximizing recall, you reduce the risk of overlooking a critical downturn. This helps in avoiding missed opportunities. 2. Optimize Precision: Once you’ve achieved a reasonable recall, work on improving precision to reduce the number of false positives. This ensures that when your model predicts a crash, it is more likely to be accurate, thus reducing unnecessary panic or overreaction in the market.
@sahiljamadar73249 ай бұрын
This helped to cover the evaluation metrics quickly in less time, definitely a nice video to see before interview. Thanks the teaching in simple manner.
@pritamrajbhar95046 ай бұрын
this is the only video that gives detailed and simple explanation in 23 min.
@priyanshusinha18374 ай бұрын
for the first time, I got feel in Machine learning. THANK YOU SO MUCH.
@81492720526 ай бұрын
thankyou so much krish sir for making our concepts crystal clear...again thankyou ...doing hardwork for us
@mahajav11 ай бұрын
Excellent, got a very good understanding of all the terms with proper examples
@optimizedintroverts6686 ай бұрын
Explained so wonderfully, made me understand fully..
@Otaku-Chan018 ай бұрын
Great explanation sir, as well as great examples. I was just looking for your videos in order to understand this concept. Couldn't find this topic in English so came here.
@SharpKnife523 Жыл бұрын
Best way to make dumb people like me understand the performance measurement of ML models. I was always confused between Recall and Precision. Kudos to you Krish!!
@pintukumar-vo3yd Жыл бұрын
Thanks sir , first time I got clean on this topic
@muhammadzohaib4343 Жыл бұрын
Sir you are great, Love from Pakistan
@justinjosechitteth4163 Жыл бұрын
Bhai great video thankyou for the contribution ..
@shahfaissal29452 жыл бұрын
I love the way you teach but everything is in bits and pieces . If there was a single playlist for data science with video numbers would have been great to follow .
@SatyendraJaiswalsattu9 ай бұрын
Crystal clear 👍
@MuhammadKhan-ok3hf Жыл бұрын
Excellent, best wishes ever, Thanks
@anirudhjayant9557 Жыл бұрын
Best explanation one can expect!!! Excellent.
@abhishekpurohit38945 ай бұрын
superb explanation.
@sekharsamanta6266Ай бұрын
Just Awesome!
@AmeliaMelia-tj3kc4 ай бұрын
great teacher ever'
@sohampatellАй бұрын
In H{beta} score the denominator 's {beta}^2 should be only multiplied to precision and not to whole of prcision+recall
@sidnoga2 жыл бұрын
Sir, please make an end-to-end Machine Learning project till deployment in Hindi. It will be very helpful for us,
@vibhutyagi87872 жыл бұрын
Your videos are always helpful sir 🙌🏼
@blaze10224 күн бұрын
18:57 recall is important
@javedalam0_7867 ай бұрын
Amazing tutorial I wish I had watched it before my exams 🫡
@abhilogy3322 Жыл бұрын
absolute clear sir.
@hari_13572 жыл бұрын
Amazing sir thanks a lot
@shadiyapp55522 жыл бұрын
Thank you sir ♥️
@satyamraj20393 ай бұрын
great video
@utsavraj2247 ай бұрын
Make it for multiclass classification
@arjunhaldankar219 Жыл бұрын
sir apne beta value kaise decide ki idhar 1 ya 0.5 ... i mean why for FP it is 0.5
@WellPlayedGamingYT Жыл бұрын
06:00 Sir You forget to cut this 😄
@shahmohammadmahdihasan324 Жыл бұрын
Thank you so much
@Mohd_Raavi Жыл бұрын
Sir make more videos and keet it up
@jitendergupta22402 жыл бұрын
theory toh samajh aa gaya, practical ke liye kaha se refer kare? Koi paid video hai kya??
@h44r96 Жыл бұрын
Yes same for me
@nightwing40908 ай бұрын
Sir arent all these metrics then meant just for logistic regression, if we use LR or smth in which we have multiplie options confision matrix wont work ?
@SyedSamar-ze8jk8 ай бұрын
Well done
@umeshsamal1652 жыл бұрын
Very amazing
@justinjosechitteth4163 Жыл бұрын
Bhai In precision is not the TP from all the Actual value(y) or is it from predicted value(y^) ?
@hari_13572 жыл бұрын
Sir if i join your full stack data science course , will you teach in the same way as in this video?? I think you have taught very well !!
@krishnaikhindi2 жыл бұрын
Yes sir
@RudraSingh-pb5ls2 жыл бұрын
@@krishnaikhindi in this video which drawingboard tool are you using ? Is it Microsoft whiteboard ?
@RiffswithMohit2 жыл бұрын
18:13 sir is case me to ager model sabhi ko cancer bata de to bhi ye best model rahega aapke logic ke hisab se q ki as u said person at lest test to karwa lega :P this question ask in interview I'm not able to answer.
@prakashraushan2621 Жыл бұрын
is case me although model ka accuracy badhega par precision kam ho jayega, bcoz FP + TP ka sum badhega. aur logically hm soche ki mera model sabko cancer patient bta dega to sare log ja kr check krwane lgenge, par hmne model phir bannya hi kis liye tha? taki isis gap ko kam kr ske right..............
@kshitijsahdev448010 ай бұрын
Type 1 and Type 2 error search karke uske baare me padho. Ek aise insaan ko, jise cancer nahi hai, usse ye bolna ki tumhe cancer hai, ye utna bada error nahi hai jitna bada error hoga ek aise insaan ko, jise cancer hai, usse ye bolna ki tumhe cancer nahi hai
@rajeevnayantripathi53704 ай бұрын
@@prakashraushan2621 nice explanation
@rajeevnayantripathi53704 ай бұрын
@@kshitijsahdev4480 nice explanation
@netviz86733 ай бұрын
in confusion matrix the x axis or top line occupies actual values while the y axis or the vertical line occupies the prediction value. Accuracy is not used in case of imbalanced data eg 0:900 and 1:100 ie no of zeros are 900 and no of ones is 100. This is imbalanced data set. If we used accuracy in imbalanced data set then our accuracy will be high already which will give false signal. Suppose using this imbalanced data set we create a model that only generates 0 as the output then this model using the formula given TP+TN/all will give 90% accuracy as all TN will be hit and all TP will be zero but due to imbalance the accuracy will be high. Hence a differnet performance metric is used in case of imbalanced data set which are precision and recall. Precision is TP/(TP+FP) like spam email model and Recall is TP/(TP+FN) like cancer detection model. And in case of stock market prediction when we need to reduce both false positive and false negative then in that case f-beta score is used. When both false pos and false nef are importabt then beta=1 (harmonic mean) ie 2*(PR)/(P+R) and when FP is more imp than FN beta=0.5 and when FN is more imp than FP then beta=2 is taken.
@justinjosechitteth4163 Жыл бұрын
so bhai what is a proper example of a balance data set, is there any method/algorithm to balance these data set ? Also if we get unbalanced dataset does it mean the accuracy is low
@rajeevnayantripathi53704 ай бұрын
In an imbalanced dataset, it's not accurate to say that the model's accuracy will definitely be low or high. What we can say is that accuracy alone is not a reliable metric for evaluating performance in such cases.
@__________________________69102 жыл бұрын
Hello krish sir can u tell me which drawing app or software you are using ?
@krishnaikhindi2 жыл бұрын
Scrible available in Microsoft store
@__________________________69102 жыл бұрын
@@krishnaikhindi thanks
@piyushshukla2382 жыл бұрын
Hi krish i m fresher in data science and i want to know how will i get the job?
@ng23neeraj2 жыл бұрын
sir, provide pdf file for this video lecture.
@suvendudey8254 Жыл бұрын
Tomorrow Stock market is going to crash that scenario i use recall bcz when (actually stock market are crush but model says it not crush so i use) plz sir corrrect or not reply me?
@rajeevnayantripathi53704 ай бұрын
1. Start with Recall: Focus on maximizing recall to ensure you capture as many potential crashes as possible. The primary goal is to ensure that as many actual crashes as possible are detected. Missing a crash (high FN) could lead to significant financial losses . By maximizing recall, you reduce the risk of overlooking a critical downturn. This helps in avoiding missed opportunities. 2. Optimize Precision: Once you’ve achieved a reasonable recall, work on improving precision to reduce the number of false positives. This ensures that when your model predicts a crash, it is more likely to be accurate, thus reducing unnecessary panic or overreaction in the market.
@justinjosechitteth4163 Жыл бұрын
Bhai what is support in the F beta score ?
@prakashraushan2621 Жыл бұрын
It's simply the number of instances in the matrix. I.e., the count of TP, TN, FP, FN
@faizannaviwala1638 ай бұрын
where r this lecture notes
@Arkestra_Moves2 жыл бұрын
Imbalance dataset miss ho gya video me lagging k karan
@jasanimihir49942 жыл бұрын
Hello sir. We use precision when FP is important. Then what is the need of F beta score like we use beta=0.5 when FP>FN. could you please explain it.
@krishnaikhindi2 жыл бұрын
We can use any one of them
@jasanimihir49942 жыл бұрын
@@krishnaikhindi thank you for the replying and clearing my doubt. Great teacher, great teaching skills and great person also❤️😇
@ghanashyampatil64992 жыл бұрын
F 1 score and f beta score same he kya
@SohamAgarwal-gs8jv2 ай бұрын
f1 score is basically f beta where beta=1
@prakharjauhari2161 Жыл бұрын
Hello sir Sir apna video ko ku bda diye timing08:34 pe
@Creative_Minds1852 ай бұрын
precision
@aparnakumari-uw3op Жыл бұрын
But if they asked why I gave more importance to FP or FN....why did I gave them equally importantance ...then what will be the answer
@NaveenSomalapuri Жыл бұрын
Is has a small correction which is rows represent actual class and columns represent prediction class