Well done sir! Thank you very much. Very succinct. I played this at 1.5x speed to cram for a test instead of reading the book for an hour. YOU ARE THE MAN!
@Ayanwesha6 жыл бұрын
MotoBoy ..if u do so.. The speech will be such u cant understand...
@patrickmoloney6727 жыл бұрын
Jesus Christ you explained what my TA couldn't in less than 5 minutes. I've a pretty good sense of Linear algebra but you just explained it so elegantly.
@Ciukyexacta9 жыл бұрын
The part with the types of Critical Points at 7:40 was the illumination I was looking for. Thank you for the great explanation!
@dknuth9229210 жыл бұрын
Fantastic video. You don't baby your audience walking through how to do every basic step and get to the meat of the the topic which brings people to your video. Thanks much.
@shrutivashishth5413 жыл бұрын
I have a test tomorrow and this was really helpful, Thanks!! :)
@ShAlAmAnAyA35 жыл бұрын
So concise and clear. Thanks so much, sir!
@mohancochin777 жыл бұрын
Thank you very much. This helped me for my exam preparation.
@toecamel8719Ай бұрын
Great, compact, understandable. Thank you!
@vanessa_annie_ikebudu8 жыл бұрын
thanks so much for this. It really brought a lot of concepts I've been learning at uni together :)
@PLUVideoPhysicsBret8 жыл бұрын
+Vanessa Ikebudu Thanks Vanessa! I'm glad it was useful!
@stephenward85885 жыл бұрын
Really great way to explain phase plane. I was struggling abit but this made it really simple
@krishanmanzano10 жыл бұрын
A very straightforward explanation without losing the listener by heavy calculations!
@theusualsuspect90763 жыл бұрын
Thanks. I was looking for this topic. God bless u
@katlig469910 жыл бұрын
THANK YOU SO MUCH !!!!!!!! I THINK YOU MAY HAVE SAVED MY LIFE
@eternalsunshine3066 Жыл бұрын
truly my lifesaver, thanks a lot sir
@FranCoVids6 жыл бұрын
I am still a little confused as to why the phase plane has a clockwise rotation at 6:20. Anybody have any further explanations?
@c.g.63253 ай бұрын
Excellent video!
@TheOne-bd2dq8 жыл бұрын
AWESOME!!!!!!!! Super efficient teaching!
@tenton2000k6 жыл бұрын
Can you elaborate on 6:12 ... i still dont understand how it tends to the right.
@ikramziane31446 жыл бұрын
Thank you very much for the vid it's really well explained. But am I the only one who got different values for Landa ( equals -5) at 2:42 ? I calculated | Landa*I _ A| . "A " stands for our matrix (4 -3, 6 -7) please correct if I'm wrong :)
@kingpanda110 жыл бұрын
Thanks for this! Saved my life. :D
@ryancarr575610 жыл бұрын
Thank you so much! My professor and textbook made this seem so complicated.
@ogunsadebenjaminadeiyin27294 жыл бұрын
True
@pavlik19968 жыл бұрын
Thank you so much.I hope i pass my DE exams
@wbushyeager61429 жыл бұрын
Very well done and fast explanation thanks!
@petroseskinder940310 жыл бұрын
Thanks for explanation Dr. Underwood.
@oussamahemchi73419 жыл бұрын
thanks Dr you made it clear for me now , tomorrow exam :)
@ogunsadebenjaminadeiyin27294 жыл бұрын
Thank you so much, what a great video!
@PLUVideoPhysicsBret10 жыл бұрын
Thanks Sophie and Krishan!
@birchwantsyou10 жыл бұрын
Great teaching!!
@iffatmeem7562 жыл бұрын
Can't thank you enough sir!
@jaswanthraj92096 жыл бұрын
you are the best!! thanks a lot sir!!
@DEL_HI Жыл бұрын
Hello sir,Could u pls help me to know in case of complex eigen value with with negative real part we have trajectories in the form of decaying spiral but how to know they are clockwise or anticlockwise
@liv90747 жыл бұрын
best explanation!!!
@jaewonseo79446 жыл бұрын
Thanks so much, very very helpful!!
@yichizhang79510 жыл бұрын
Great explanation mate!
@sacmaliks4 жыл бұрын
I am enlightened.
@edGuy_2 жыл бұрын
Eigenlightened!
@samwakieltojar81544 жыл бұрын
fanatstic explanation
@anilbest4655 жыл бұрын
can we draw phase potrait for four order differential euation by converting it in first order system differential of equations in mathematica
@TalhaKaka088 жыл бұрын
At 9:17 wont the stable attractive point be asymptotically stable?
@PLUVideoPhysicsBret8 жыл бұрын
Hi Talha - there are two types of stability: one, where a trajectory stays "nearby" a point (or orbit), and another, where a trajectory converges to a point (or orbit). We refer to the latter as either "attractive" or "asymptotically stable" - they mean the same thing. Hope that helps!
@TalhaKaka088 жыл бұрын
Dr. Underwood's Physics KZbin Page ahhh got it! Thanks a lot Dr. Underwood
@اممحمد-ق2ه3 жыл бұрын
Hi and thanks a lot for your help! My problem is the following: I would like to draw a phase diagram for a system of 3 differential equations And it has three parameters
@dagobadank5 жыл бұрын
For the solution to eigenvalue of -5, shouldn't the line be x=3y or y=1/3x?
@thabsor2 жыл бұрын
Thanks you verry much!
@اممحمد-ق2ه3 жыл бұрын
Hi and thanks a lot for your help! My problem is the following: I would like to draw a phase portrait for a system of 3 differential equations.
@jiaqilu78748 жыл бұрын
Thank you ,very clear!
@tamannasharma15683 жыл бұрын
Sir, how do we get to know when the eigenvalues are imaginary then the phase curve would be rotational?
@praveenkandula80119 жыл бұрын
gooD explanation.....
@srivathsanvivek178810 жыл бұрын
crisp explanation.. :)
@merkelwave16542 жыл бұрын
great video! but we just had an example where both lambdas are positive & real and still we got an saddle point. y_1' = 2*y_1 - y_2 y_2' = -y_1 + 2*y_2 lambda_1 = 3 lambda_2 = 1 could u maybe explain that?
@ReasonableSwampMonster2 жыл бұрын
I must just be missing something but I have no idea why the clockwise rotation occurs, the rest is ok though. Thank you for the video :)
@ib46099 жыл бұрын
Thanks a lot! I'd like to ask a question, when you have roots that are both real and both positive or negative, so they're both growing/decaying solutions and you end up having parabolas that are at a tangent to one of the manifolds and are vertical to the other manifold, how do you know which one it is vertical/horizontal to?
@PLUVideoPhysicsBret9 жыл бұрын
***** Hi! Thanks for your question, though I'm not sure I completely understand what you're asking. What I think you're asking is what if you have a system with two positive real eigenvalues, like: x' = 4x - y y' = 6y-3x which has eigenvalues +7 and +3. In this case, the phase diagram will not have parabola-shaped trajectories, but instead will have trajectories pointing outward from the origin, since all solutions grow away from the origin due to the positive eigenvalues, as in the "Unstable Node" diagram in the video.
@ib46099 жыл бұрын
Dr. Underwood's Physics KZbin Page Thanks for your (speedy) reply! I understand that, but you know the parabola-shaped trajectories, they will go along one of the lines and be at a tangent to one of the other lines right? So you get something that looks like an X with parabolas on either side of one line - they are at a tangent to this line - and this means the parabolas will be inline/parallel almost to the other line. I'm asking how you know where to draw the parabolas, I know they reflect each other and I know what direction to put the arrows on, but how do you determine which side of the "X" to actually place them on? Does that make more sense? Really appreciate your help Dr. Underwood, thanks a lot!
@rajathebbare96639 жыл бұрын
Hello Dr. Underwood , Thanks for the lecture . I was wondering if you could answer a small doubt I had . I came across plot which involve real part Vs Imaginary part of eigen values in a CFD problem . What can I comment when i look at the change in origin of Real/Imaginary part based on change in flow parameter. If possible provide me with some reference. Thank you in advance !
@PLUVideoPhysicsBret9 жыл бұрын
Hi +Rajat Hebbare , I'm not sure I quite understand the question. What do you mean by "change in origin of Real/Imaginary part"? What about the origin is changing? I suppose you're referring to some system of linearized Navier-Stokes equations? Under what approximation are you working?
@mahmoudabuabed73065 жыл бұрын
Fantastic you're intelligent
@shahlayadollahi95748 жыл бұрын
thanks so much dear Dr for this brief and at the same time comprehensive lecture. I'm new at this subject and studying on my own, so it was really cleared it out for me. Just a little question: critical points must be real or else it wouldn't be linear anymore. Am I right?
@PLUVideoPhysicsBret8 жыл бұрын
Well, I'm assuming here that x(t), y(t) are real functions, in which case a non-real critical point should be interpreted as the absence of a critical point. But I don't think that connects to linearity - even non-linear systems will have real critical points.
@اممحمد-ق2ه3 жыл бұрын
How to find Equil Phase Portrait of three (x,y,z)
@3washoka4 жыл бұрын
thank you!
@silkraod335 жыл бұрын
omg you're the best thank you
@ramanishsingh18538 жыл бұрын
Hello sir. Thank you for your videos. Could you please tell me which software were you using to write?
@PLUVideoPhysicsBret8 жыл бұрын
+RAMANISH SINGH Thanks! I use Camtasia Studio to do the screen recordings. The notes themselves are written on OneNote.
@ramanishsingh18538 жыл бұрын
Thank you sir.
@اممحمد-ق2ه3 жыл бұрын
Can you help please my proplem classification of critical points of system in three equation in 3d
@اممحمد-ق2ه3 жыл бұрын
Can you help please How classification of critical points of system in three equation in 3d
@GauravGupta-pb8mk3 жыл бұрын
Thank you sir
@trendycareerssa208110 жыл бұрын
Thank you so much!
@joeyquiet40203 жыл бұрын
thank you
@lailamajnuproductions15818 жыл бұрын
What if eigenvalues are coincident and comes zero ?
@saikatnandy28254 жыл бұрын
Thanks sir
@hazemahmed83336 жыл бұрын
thank you so much
@hamzehabuabed91696 жыл бұрын
thanks for you
@HORIMEKABDERRAHMANE9 ай бұрын
amazing
@amitdhimanamit36578 жыл бұрын
huge thanks for that....
@mohammedchentouf11455 жыл бұрын
thank u sir,,
@youmah259 жыл бұрын
respect sir
@ChiRhoFTW10 жыл бұрын
I thought stable points were called "sinks" and unstable points were called "sources"?
@PLUVideoPhysicsBret10 жыл бұрын
Sure - if you use "source" or "stable attractive node", everyone will know what you're talking about (same with "sink"). Just note that there is a difference between a "stable attractive node", and just a "stable node". I don't think you want to call them both "source" - that obscures an important difference between them.
@ChiRhoFTW10 жыл бұрын
Okay. Thanks for the clarification!
@maheshsri50799 жыл бұрын
nice and easy
@telcomun10 жыл бұрын
thanks
@karimkhan13129 жыл бұрын
good introduction - amarjit advocate delhi high court -india
@danieldesalegn53862 күн бұрын
wow!
@jonastrumbo49422 жыл бұрын
Careful, the eigenvalues for that matrix are incorrect, should be 5 & -2