The best lecture I have seen for SIFT features so far.
@CyrillStachniss8 жыл бұрын
Thanks!
@shiqiai28816 жыл бұрын
exactly. the best~
@mohammadaminmousavi50115 жыл бұрын
The BEST and the most helpful lecture for SIFT and RANSAC that i ever seen. Thank you Prof.Stachniss
@W00PIE4 жыл бұрын
Being a 40+ dev who's never seen a university, I started with CV two days ago because of an urgent and interesting project at work. Feature detection/matching seemed like the right thing to look for after some research. Now, after watching and digesting your talk, I feel extremely confident about how I'm going to tackle the problem. I'm building a non-interacting optical device monitoring system for about 3.5k rail infrastructure sites that is supposed to run on minimal ARM hardware using gocv. You really know how to get the key points across, thank you for sharing. I'll definitely take a look at your other videos. Cheers from Krefeld!
@bobthemagicmoose6 жыл бұрын
Excellent lecture! I was familiar with some of the concepts, but this lecture really gave me a strong grasp of the terminology and how these concepts interplay.
@supundasanthakuruppu34962 жыл бұрын
Thank you very much professor. It was very clear and I could understand the concepts clearly.
@johnnysuzuki29087 жыл бұрын
Thank you Cyrill! I benefit a lot from your clear explanation of SIFT and RANSAC.
@alaamohammad27787 жыл бұрын
you just simplified the paper of Distinctive image features from scale invariant keypoints, many thanks for you, you are amazing,
@arunram66877 жыл бұрын
This was good. Clear and the most intuitive explanation
@zhaoxiao20024 жыл бұрын
Motivation is explained very well. It is important for understanding. thanks.
@stefano89363 жыл бұрын
29:00 the two images are not at "slightly different point of views": it's actually the same. Easy to understand since all the keypoints are matching and all the lines are horizontal.
@mohalemolefe4 жыл бұрын
Explanation here is top class! Thank you Cyrill👌🏽
@TheGermanGuy918 жыл бұрын
You really helped me writing my paper and understanding the concepts. Cheers mate.
@Mlantow207 жыл бұрын
19:16 thsmos, smos, smoos, EVEN MORE THSMOOST. Great lecture by the way !
@AndreaCensi7 жыл бұрын
Nice lecture, Herr Doktor Professor! I watched this the night before the day I was supposed to give a lecture on the same topics :-)
@CyrillStachniss7 жыл бұрын
Thanks Andrea, hope it helped. If you need the pptx slides, let me know. Cheers!
@amnanajib81675 жыл бұрын
For the sift, I was wondering if we take the original image and the one after smoothing and get different maxima, which points are then to consider as key points?
@childhoodgames17126 жыл бұрын
Thank you so much, ( But there are some equations are used at David Lowe 2004 paper describes the SIFT algorithm, could you talk about them to understand the application of those equations clearly? )
@smazi007 жыл бұрын
Nice lecture sir, can you suggest a way to apply SIFT to omnidirectional images?
@fablungo7 жыл бұрын
Maybe I have misunderstood other lectures on it, but I think the way you describe how SIFT handles scale invariance (and even how you have annotated the diagram) at 19:50 implies it is the different size images that provide the scale invariance whereas my understanding is that it is the differing levels of smoothing that are finding gradients at different scales and that the different size images that are shown in the diagram is just an optimisation based on the fact if the maximum frequency is halved in each dimension (as a result of smoothing), then the image can be subsampled to half the size in each dimension without loss of information. Great lecture otherwise, though. It was very comprehensive. Thanks.
@mauroboreggio8352 жыл бұрын
Hi fabrizio. Could you better explain the concept of scale invariance you are pointing to?
@ivanperez77136 жыл бұрын
Thanks, clear explanation of the RANSAC algorithm
@elena_stamatelou8 жыл бұрын
Very helpful to understand practically the topic
@Ub4ys7 жыл бұрын
thanks a lot for RANSAC explaination. it's really helpfull
@aseelmsc21217 жыл бұрын
Very helpful to understand RANSAC thanks a lot
@TheTacticalDood4 жыл бұрын
Hi Cyrill, do you think it is still valuable to learn hand-engineered features such as SIFT in the era of CNNs and deep learning?
@amnanajib81675 жыл бұрын
How is e in real life given, I don't think so will sit there and count how many outliners are there?
@manikabindal13927 жыл бұрын
I needed to understand RANSAC...thanks a lot for the nice lecture..:)
@dali75727 жыл бұрын
Excellent explanation
@1MacDuck1 Жыл бұрын
This was so awesome, Thanks!!!
@yousefhajhamoud88546 жыл бұрын
Thank you very much for this wonderful lecture.
@iitansrocks58636 жыл бұрын
sir plz help me using for matlab code according area
@loneband3023 жыл бұрын
Until now, I still trying to find the value in keypoints using Opencv and python...hope anyone can help me.
@polaw72046 жыл бұрын
43:46 Ransac algorithm
@vlogsofanundergrad20345 жыл бұрын
thanks
@henriqueramosricci17284 жыл бұрын
Excelent class!
@whasuklee5 жыл бұрын
Great lecture! Thank you so much again!
@vitaliiwellplaied13667 жыл бұрын
Very helpful lecture! Thanks a lot.
@kutsalozkurt5 жыл бұрын
Awesome lecture, thank you so much
@ianchik8 жыл бұрын
Great lecture. Helped me a lot. Thanks :)
@roar3638 жыл бұрын
Nice lecture !
@CyrillStachniss8 жыл бұрын
thank you
@your_name963 жыл бұрын
RANSAC from 43:00
@OmarAbdelhamid--4 жыл бұрын
I don't usually comment on any stuff but WOW WOW WOW WOW
@anushanramesh23447 жыл бұрын
Thanks a lot sir!!! It was really helpful
@asiamarri59397 жыл бұрын
very nice lecture. May i request the slides?
@CyrillStachniss7 жыл бұрын
Hi, You can download the full set of Powerpoint slides (with TeXPoint formulas) here: www.ipb.uni-bonn.de/html_pages_staff/CyrillStachniss/stachniss-photogrammetry-slides.zip Best, Cyrill
@asiamarri59397 жыл бұрын
Sorry for late reply. Yes I have downloaded. Thaink you so much for your prompt response.
@jiongwang76457 жыл бұрын
can I click more than 1 once the thumb up ? Great lecture !
@iota11546 жыл бұрын
why is there 4*4 histogram in 39:01....I just count 4.........
@W00PIE4 жыл бұрын
There are four quadrants (as seen on the right side), but each quadrant is comprised of 4x4 fields (left image). So in the end 16 histogram fields are condensed into a single quadrant.
@sumanthbalaji17683 жыл бұрын
32:28
@wajahatnawaz21457 жыл бұрын
it is really helpful to understand the SIFT keypoint detection etc. I need some help can you share your email address.