The angular dependence of the rigid-rotor wavefunctions is described by a family of functions known as Legendre polynomials.
Пікірлер: 14
@jaybae805611 ай бұрын
this is by far the best tutorial on yt. thank you so much.
@muhsinhancer Жыл бұрын
very clear explanation. thanks a lot Dr. Steven Stuart
@PhysicalChemistry Жыл бұрын
My pleasure
@arifahmedbegg21992 жыл бұрын
My college lectures on this topic were very boring & tough too. Thanks to you sir for helping.
@PhysicalChemistry Жыл бұрын
Happy to help. Polynomial basis sets are fascinating and useful, but t is definitely be hard to teach them in a way that doesn't put students to sleep.
@mortezakhoshbin4 жыл бұрын
so simple. thanks god for finding your channel
@PhysicalChemistry4 жыл бұрын
It is simple once it makes sense to you, right? Thanks for the support.
@mortezakhoshbin4 жыл бұрын
@@PhysicalChemistryright! thank you...
@lordofutub2 жыл бұрын
Yo this is such a good explanation
@loser-kun80624 жыл бұрын
Thank you for your effort.
@PhysicalChemistry4 жыл бұрын
My pleasure! Thank you for your interest
@adeelrahmat31943 жыл бұрын
In wave function we put m is negative so how we calculate Legendre polynomial on negative numbers??
@PhysicalChemistry3 жыл бұрын
They are different only in the normalization constant. The x-dependence of P_l^m is the same as that of P_l^−m. If the normalization constant is important, then you can use this equation: P_l^−m = P_l^m * (l-m)! / (l+m)!