Pole Placement for the Inverted Pendulum on a Cart [Control Bootcamp]

  Рет қаралды 103,305

Steve Brunton

Steve Brunton

Күн бұрын

Пікірлер: 34
@Drone.Robotics
@Drone.Robotics 4 жыл бұрын
Thank you Sir....I have seen the whole series and it have cleared lot of my concepts about control theory. Your videos are just great and your way of teaching complex things in simple manner is appreciable. Thanks Again.
@supercampillero
@supercampillero 4 жыл бұрын
Had lots of control teachers, let me tell you are a GOD!
@MinhVu-fo6hd
@MinhVu-fo6hd 4 жыл бұрын
Thank you for the great video. However, I found a little bit weird that we designed u=-kx but implemented u=-k(x-x_ref). Could you explain why it still works?
@MinhVu-fo6hd
@MinhVu-fo6hd 4 жыл бұрын
@Justinus Hartoyo yes, it is the error dynamics. I didn't realize that he overloaded the variable x.
@keifonlee8342
@keifonlee8342 3 жыл бұрын
@Justinus Hartoyo This comment should be highlighted here
@motherbear55
@motherbear55 4 жыл бұрын
At 11:03 you said that making the eigenvalues too aggressive will actually cause the system to become unstable, due to the nonlinear dynamics. But this is always a risk -- we've linearized the system around a particular point, so going too far away from that point could cause our controller to fail. Is there a way to find the border of the state space where our linearized controller will start to fail? If so, would it be possible (or practical) for the size of stable area to be a term in the cost function that you describe in the LQR video? (The bigger the area where the controller can stabilize around a fixed point, the better -- so I'd like to optimize the controller to widen that area)
@Eigensteve
@Eigensteve 4 жыл бұрын
This is a great question. That is true that often nonlinearity implies some "basin of attraction" near your linearization. In general, saying things about performance and convergence in nonlinear systems is very challenging. Lyapunov functions are useful here, but they are hard to come by in real systems. I do seem to remember seeing the radius of convergence being a term in some advanced control optimizations, but I can't quite remember where, off the top of my head.
@motherbear55
@motherbear55 4 жыл бұрын
@@Eigensteve thanks for the quick response and the pointer to lyapunov functions. Your videos are awesome by the way!
@babakghorbani2203
@babakghorbani2203 3 жыл бұрын
The cool thing here was that y_ref did not show up in designing the controller. We only used y_ref when solving using ode45, which to me means that the final state does not have an effect on the controller. So cool. Someone correct me if I'm wrong. (Maybe it's a result of those equivalent reachability, controllability, etc. stuff)
@blaumeisen
@blaumeisen 4 жыл бұрын
good explanation! Danke sehr!
@krisjk999
@krisjk999 4 жыл бұрын
I have a doubt on the beginning values used in the simulation. The starting values are chosen close to the point where we want to stabilize (pi,0) or (0,0). What happens if the starting values are faraway from the point to stabilize? I guess our linear model is not valid anymore and we wouldnt be able to guarantee that we can reach the quasi stable equilibrium (pi,0). Is there any general rules on this? If starting state is way in the non linear region (where linear approximation doesnt apply), can we still use the linear controller?
@clementboutaric3952
@clementboutaric3952 2 жыл бұрын
Well at some point you will have to use non linear control, which is much more complicated than linear control. Or you can set up a trajectory to get near your desired point, and control your system so that it follows this trajectory by linearizing several times along its path. When you get close enough, you can start stabilizing the point using what he did.
@sabb1495
@sabb1495 4 жыл бұрын
are there conditions on m, M and l that would make this uncontrollable?
@farahmahdi4771
@farahmahdi4771 3 жыл бұрын
Thanks a lot! Great explanation
@kaikingkailai
@kaikingkailai Жыл бұрын
Thank you professor. Where I can get the example code?
@VictorPalamim
@VictorPalamim 4 жыл бұрын
Thanks Professor! How can I generate the code to run the controller in Arduino?
@Eigensteve
@Eigensteve 4 жыл бұрын
Good question. You can start by downloading the code at databookuw.com. Also, Brian Douglas has some great stuff on control implementations in hardware.
@vicentecaneiro5025
@vicentecaneiro5025 4 жыл бұрын
Thank you for your knowledge sharing professor. If I had a real system of IP and want to control it by controlling its linear velocity (instead of force), how could I get my linear mathematical model? Could I do it only by obtaining my B matrix by differentiating my state equation by linear velocity? Thank you very much.
@octaviodeshays9845
@octaviodeshays9845 4 жыл бұрын
Hey professor! your videos are amazing, I would like to know where can I download the matlab code that you use in these video? It would be very helpful for a proyect I'm working on at my university in Argentina. Thanks for everything!!
@lorenzoalbertini5658
@lorenzoalbertini5658 Жыл бұрын
Can you help ,e with the discretization of this sistem? in particular which sample rate should I use in c2d command in Matlab? thx
@arunagiriharish4121
@arunagiriharish4121 3 жыл бұрын
Dear Prof where to get the matlab command you are using for teaching here in videos?? i.e. sim_cartpend and lqr_cartpend etc
@ismaelochoa8730
@ismaelochoa8730 2 жыл бұрын
In this part of the code: [t,y] = ode45(@(t,y)cartpend(y,m,M,L,g,d,-K*(y-[4; 0; 0; 0])),tspan,y0); why do you use this matrix [4; 0; 0; 0] when S=1 and [1; 0; pi; 0] when s=-1, is this from the linearisation process?
@ismaelochoa8730
@ismaelochoa8730 2 жыл бұрын
i got it!... it is explained later
@ahmedrista164
@ahmedrista164 3 жыл бұрын
Thank you, professor, I can't upload the link of code, is there another link to download the code?
@juanleonardorodrigues1337
@juanleonardorodrigues1337 3 ай бұрын
where can i find the code?
@trfldwtrl
@trfldwtrl 10 ай бұрын
how to visualize it? how to get drawcartpend_bw file? :)
@ailsani8749
@ailsani8749 2 жыл бұрын
Thank u thank u thank u
@kelumsenaka4146
@kelumsenaka4146 3 жыл бұрын
Can I get this MATLAB code?
@tonginhquan1339
@tonginhquan1339 8 ай бұрын
can i have code of matlab pls
@jrbrown1989
@jrbrown1989 3 жыл бұрын
What do controls engineers have in common with strip club managers? They both care about optimizing pole placement.
@anantj18
@anantj18 4 жыл бұрын
Great lecture but, How is he writing like that? What black magic is this?
@RugnirSvenstarr
@RugnirSvenstarr 3 жыл бұрын
He is writing on glass that is between him and the camera. Normally the writing would appear backwards, but the video has been flipped in editing software
Control Bootcamp:  Kalman Filter Example in Matlab
22:12
Steve Brunton
Рет қаралды 156 М.
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН
Everything You Need to Know About Control Theory
16:08
MATLAB
Рет қаралды 601 М.
Equations of Motion for the Inverted Pendulum (2DOF) Using Lagrange's Equations
15:25
Good Vibrations with Freeball
Рет қаралды 108 М.
Degrees of Controllability and Gramians [Control Bootcamp]
15:24
Steve Brunton
Рет қаралды 82 М.
Inverted Pendulum on a Cart [Control Bootcamp]
15:08
Steve Brunton
Рет қаралды 254 М.
January 31, 2025
7:49
Bernie Sanders
Рет қаралды 29 М.
What Is Sliding Mode Control?
19:33
MATLAB
Рет қаралды 23 М.
Classic Inverted Pendulum - Equations of Motion
23:01
Brianno Coller
Рет қаралды 157 М.
Controllability [Control Bootcamp]
32:30
Steve Brunton
Рет қаралды 157 М.
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН