If anyone wants to learn ML then it is the best channel.. explanation is amazing for all the topics.
@deeksha-cm8kq19 күн бұрын
Sir You are really one of the best teachers on youtube , the way you teach and specially they way you create examples shows how much you know about the stuff you are teaching. Thankyou so much Sir. I wish one day I have this amount of knowledge so that I can also make a difference like you .
@ankitchoudhary93022 ай бұрын
Sad to Say but It feels Like some People just copied Your youtube content , put it in a course and made hell lot of Money and Launched their Companies. They might have stolen my Money but you Earned My respect !!!!
@stardusthereАй бұрын
which course you r talking about bro?
@ug1880Ай бұрын
Tell which one....we will expose him
@ankitchoudhary9302Ай бұрын
@@ug1880I won't name it but you know cheapest things often attract most buyers.
@sanjaymange6904 Жыл бұрын
great video bro , excellent , perfect , no words to express my gratitude. U covered all the doubts I had w.r.t to polynomial regression
@0Fallen02 жыл бұрын
6:03, PolynomialFeatures class for x1 and x2 and for degree 3, also adds columns (x1)(x2), (x1^2)(x2), (x1)(x2^2). Generally, for PolynomialFeatures set to degree = d, and we originally had n features, we will get a total of (n+d)! / d! n! features. Just thought this'd be useful to know.
@ruchiagrawal64322 жыл бұрын
thanks! I had the same doubt because at 5:52 sir didn't add the additional term x1*x2, so I got confused. Please correct me if I'm wrong.
@thatsfantastic3132 жыл бұрын
@@ruchiagrawal6432 it gets features’ high-order and interaction terms. suppose (x1,x1) becomes (1,x1,x2,x1^2,x1x2,x2^2) and so on
@subhajitdey4483 Жыл бұрын
from where/how the term (X1)(X2) coming from ? Kindly elaborate
@manishsinghmehra7555 Жыл бұрын
@@subhajitdey4483 formula bro (a+b)^n where n is the degree of polynomial.
@rb47547 ай бұрын
You way of teaching is very very interesting.
@messi0510 Жыл бұрын
1:35-->7:25 What is polynomial Linear Regression?
@laxmimansukhani18252 ай бұрын
great explanation !! every student owes you alot !!
@raj-nq8ke2 жыл бұрын
Perfect explanation as always.
@saptarshisanyal67382 жыл бұрын
Your explanation is wonderful. I request you to kindly prepare a video to explain the code.
@balrajprajesh64732 жыл бұрын
Best of the best!
@alihasanmerchant93352 жыл бұрын
Best, simple & easy explanation
@hari_thaniwal8 ай бұрын
Watch this video with the subtitles provided by KZbin. You will find another story in the subtitles 😅
@SonuK78952 жыл бұрын
Thanks for the Video Sirjiiii
@colabwork19103 жыл бұрын
Awesome Explanation.
@zainfaisal31539 ай бұрын
Sir you generated data in form X and y, what about, if we have real life dataset, then how to plot data distribution?
@amitbaderia63852 жыл бұрын
Excellent. Very well explained. You should use real world data instead of random numerical values
@JACKSPARROW-ch7jl Жыл бұрын
Thank u nitish 🎉
@1981Praveer9 ай бұрын
we might have to use "print("Input", poly.n_features_in_)" instead of "print("Input", poly.n_input_features_)"
@sandipansarkar92112 жыл бұрын
finished watching
@heetbhatt4511 Жыл бұрын
Thank you sir
@rafibasha41452 жыл бұрын
Hi Nitish bro,this audio is not clear ..please do new video if possible on same topic..also please cover fearure selection xgboost
@balrajprajesh64732 жыл бұрын
you can use earphones, it will be understandable.
@devendrasharma5567 Жыл бұрын
Infinit time thankyou ir
@Sreedeviha2 жыл бұрын
I understood the explanation well.. thanks... but Bhai one doubt in real data set by looking at the data without plotting graph, will I be able to tell we need to use poly reg.. Also if we add features like X^2,X^3, will it not end up with multicollinearity as dependency b/w input features exists now??
@thatsfantastic3132 жыл бұрын
Yes it adds multi-collinearity in your model by introducing x^2, x^3 features into your model. To overcome that, you can use orthogonal polynomial regression which introduces polynomials that are orthogonal to each other.
@subhajitdey4483 Жыл бұрын
One qurstion.... 10:37 why we are not using fit_transform() for X_test_trans as X_train_trans ??
@manishsinghmehra7555 Жыл бұрын
fit() is used to calculate mean and variance of the data, while transform() is use to transform (scale the data according to our need) the data. When we first use fit_transform() which already calculated mean and variance from 80% of data, which is more reliable than the 20% of data i.e. X_test_trans also by doing so we keep the mean and variance of whole dataset same that's why we only use transform for X_train_trans.
@rohinisingh69163 ай бұрын
Thank you @@manishsinghmehra7555
@Ishant87511 ай бұрын
Why in polynomial regression with degree 2 is not able to capture the bowl in the training dataset? I think that curve shown was for a higher polynomial.
@Tusharchitrakar11 ай бұрын
Yes even I was confused because the poly features should have fit better for degree 2
@sanjeevranjanmishra88113 жыл бұрын
Can we apply polynomial regression on dataframe (let's say df) first then after we split x into train_x or test_x. If yes then why everyone doing split first then transform x_train then x_test.
@manishsinghmehra7555 Жыл бұрын
Why do we create X_new and y_new, while we have X_test_trans and y_pred
@randomlyaj47356 ай бұрын
Same doubt
@krishnakanthmacherla44312 жыл бұрын
Wow
@namanmodi75362 жыл бұрын
nice
@ahmadansari77082 жыл бұрын
❤️
@WhySachi8 ай бұрын
❤
@anuragkothari83845 ай бұрын
You should have write the code from scratch for polynomial feature generation
@rk_dixit4 ай бұрын
plz spend a little more time on code writing or code explanation 🙏