Can keep listening to the content for hours without stress or anxiety :D and no drop in enthusiasm or learning. Covering every important detail methodologically.
@swiss8943 Жыл бұрын
I wish I could listen to it for hours, but I have my exams right after 2 hours
@wanderlust_womaniya Жыл бұрын
Thank you so much for clarifying this in such a simple language and specially with showing websites that give visual demonstration of such concepts! 🙏🙏🙏🙏
@pravinshende.DataScientist Жыл бұрын
I have learned a lot much from this channel .. Thank Nitish sir!
@rishabhvyas8562 жыл бұрын
One of the best teacher i ever found ❤ I feel so lucky that i found you. Thank you so much sir i really appreciate you🙏
@AryanSingh-fe5uy Жыл бұрын
Sir your teaching flow and method is awesome
@balrajprajesh64732 жыл бұрын
First I like, then I watch!
@meerzamanatali8914 Жыл бұрын
Same 😊
@Vid_Lumina3 ай бұрын
Us moment
@yashgupta76047 ай бұрын
Sir you are one of the best teachers i have ever studied from .Keep shinning sir. I am very lucky that i found you.Keep showering knowledge sir 😇
@chetanmundhe78992 жыл бұрын
Am 3rd, I just started watching but thought of putting comment first.... You are greattt broo... Lots of blessings
@pravinshende.DataScientist Жыл бұрын
every time you properly understand the why concepts that why we get the concptual clarity .. so ratta marne ki jarurat nahi hoti
@sahuchiragshyamlal3684 Жыл бұрын
problems with convolution layer: i) memory issue ii) translation variance => features are location dependent solution: i) strides solve first prob only ii) pooling solve both prob relu apply on feature map so non linear feat map then apply pooling(downsampe feature map) model1.add(MaxPooling2D(pool_size=(2,2),strides=2, padding='valid')) maxpooling in receptive field(pool_size) keep dominance feature and discard low level details 15:00 min for dimensions No training require during backpropagation Advantages: i) reduce size of feat map ii) Translation invariance iii) No need of training bcz its just aggregate opetaion iv) enhance feat only in max pooling 24:00 global max and avg pooling Disadvantages: i) Translation invariance not used in Image segmentation ii) Loose lot of info
@debojitmandal8670 Жыл бұрын
But from wht i understood is that pooling will reduce your image size therefore your loosing some information how do you solve that
@samaysingh57942 ай бұрын
@@debojitmandal8670 you are right but it is like generalizing i.e. getting overall idea it is some what removing overfitting which we can call translation variance in CNN
@algocoholic24942 жыл бұрын
2nd time.... 1st view and 1st comment 🤣🤣🤣🤣🤣...love you sir.... Hope you have read the form that I filled
@piyushpathak73112 жыл бұрын
Sir please complete this series as soon as possible..
@gauravyadav3315Ай бұрын
LEGEND 🔥
@savyasachi69885 ай бұрын
very nice pooling explanation
@AlAmin-xy5ff2 жыл бұрын
You are really awesome sir!!!!!!
@guru_bro10 ай бұрын
Very good 👍
@homeboy17332 жыл бұрын
Awesome Sir
@rb47545 ай бұрын
First I like then I watch the video and then I comment...
@Pawan-pm4tw11 ай бұрын
Salute sir❤️
@gurpreetkaur-pf1bf11 ай бұрын
Thku from heart ❤️
@farhadkhan3893 Жыл бұрын
you discussed a problem in the previous video of Padding and strides that some information is lost while featuring the images so you applied the padding to maintain the size of the image. so my question is, isn't it a problem that some information is lost in pooling?
@narendraparmar1631 Жыл бұрын
help a lot Thanks
@mr.deep.2 жыл бұрын
Best
@mihirthakkare5047 ай бұрын
Santre colour ka billa❤ in video is lub
@tanveerbashir8393 Жыл бұрын
Thank you🥰😍😇
@yashjain6372 Жыл бұрын
awesome video. Doubt : 20 Min But why we are not getting shape of 8 by pooling ?
@sandipansarkar92112 жыл бұрын
finished watching
@AmitKumar-kt8oc2 жыл бұрын
Amazing 😍
@vairab18767 ай бұрын
What is the size of kernel in conv2d_1 ? there are 32 kernel , is it (3,3) or (3,3,32) ?
@vivekacharya36522 жыл бұрын
Main first😄😄
@elonmusk42674 ай бұрын
great
@rahuljha368611 ай бұрын
✓ done
@rachitsingh4913 Жыл бұрын
Can we use padding and pooling together ? Because by using padding we are actually stopping our features from loosing information whereas by using pooling we are loosing some information . Can someone please clear my doubt ?
@chetanmundhe78992 жыл бұрын
Quick question... Do you work for any company or work for yourself?
@nipunsingh77402 жыл бұрын
If possible, do upload your notes too along with the videos
@shashankshekharsingh9336Ай бұрын
legend🔥🔥
@ppal63292 жыл бұрын
The best
@varunnnwtf20 күн бұрын
JODDD❤❤
@muhammadyaseen28562 жыл бұрын
Sir please create playlist on -- Computer Vision and Image Processing --
@charanpoojary4804Ай бұрын
great
@ebrahimhaquebhatti32582 жыл бұрын
2:50 Isn't it 224x224x3?
@salihamirza4563 ай бұрын
BEHTREEN!!
@divyakarlapudi6 ай бұрын
best
@harshumokal57362 жыл бұрын
Please do something on object detection
@divakarsaraswat78202 жыл бұрын
Sir, Data analyst k liye full road map machine learning ka