One more interesting and challenging problem. Thank you, Prof for the solution.
@PreMath Жыл бұрын
You are very welcome! Thanks for your continued love and support! You are awesome, Varadarajan. Keep smiling👍 Love and prayers from the USA! 😀
@sergeyvinns931 Жыл бұрын
Какой на хрен экс и уай, если это одно и то же, то есть радиус вписанной окружности?
@Abby-hi4sf Жыл бұрын
THANK YOU FOR PITOT THEOREM PROOF!
@jackrubin6303 Жыл бұрын
Dear Professor, you are preventing me from acquiring Alzheimer’s dementia. Love from Australia
@PreMath Жыл бұрын
I call these math puzzles "gymnastics for the mind!" They make us think and improve mental agility! Thanks for your feedback! Cheers! You are awesome, Jack. Keep smiling👍 Love and prayers from the USA! 😀
@tecevik6196 Жыл бұрын
Wow. I don't ever see this theorem. Thank u!
@PreMath Жыл бұрын
Keep watching... You are very welcome! You are awesome. Keep smiling👍 Love and prayers from the USA! 😀
@theoyanto Жыл бұрын
Marvelous example, I had no idea such a theorem as Pitot existed, thanks for broadening my view, geometry is just so much more interesting than I ever imagined. Thank you very much You are indeed the Alchemist of geometry, its as if you say "let it be so" And it is so !
@mariangorski Жыл бұрын
I like very much your lessons. Thanks
@PreMath Жыл бұрын
Glad you think so! Thanks for your continued love and support! You are awesome. Keep smiling👍 Love and prayers from the USA! 😀
@sorourhashemi32492 ай бұрын
Perfect. Thanks
@spiderjump Жыл бұрын
By Pythagorean theorem, 2r•2r + 12•12 = (30-2r)^2 Solve for r Then area of blue circle = pi•r^2
@KAvi_YA666 Жыл бұрын
Thanks for video.Good luck sir!!!!!!!!!!!
@HappyFamilyOnline Жыл бұрын
Awesome👍 Thanks for sharing😊😊
@marioalb9726 Жыл бұрын
Taking the right triangle, we have: (2r)²+(21-9)²=(21-r+9-r)² 4r²+144=(30-2r)² 4r²+144=30²-120r+4r² 120r=756 r=756/120 r=6,3 cm Area = π r² Area = 124,7cm² ( Solved √ )
@ramanivenkata3161 Жыл бұрын
Excellent working
@PreMath Жыл бұрын
Thanks for your continued love and support! You are awesome, Ramani. Keep smiling👍 Love and prayers from the USA! 😀
@nirupamasingh2948 Жыл бұрын
V nice explanation.
@PreMath Жыл бұрын
Glad you think so! Thanks for your continued love and support! You are awesome, Niru dear. Keep smiling👍 Love and prayers from the USA! 😀
@nirupamasingh2948 Жыл бұрын
@@PreMath 🙏🙏
@himo3485 Жыл бұрын
(21-9)²+(2r)²=(21-r+9-r)² 144+4r²=900-120r+4r² 120r=756 r=63/10 63/10*63/10*π=3969π/100 (Area of Blue shaded Circle)
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀
@bigm383 Жыл бұрын
Love your work, Professor!🥂❤👍
@PreMath Жыл бұрын
Glad to hear that! Thanks for your continued love and support! You are awesome. Keep smiling👍 Love and prayers from the USA! 😀
@bigm383 Жыл бұрын
@@PreMath 😂😄👌
@jimlocke9320 Жыл бұрын
For those who didn't know the Pitot theorem: I am assuming that viewers will find that lengths DF and AE are r and, in ΔBCE, find the side lengths of 2r and 12. After designating length FC as z and BE as w, two tangent theorem produces the hypotenuse length as z + w. We derive 2 equations: r + z = 9 for the trapezoid's top side and r + w = 21 for the trapezoid's bottom side, and add them: 2r + z + w = 30. Subtract 2r from both sides and z + w = 30 - 2r. So, our hypotenuse length z + w = 30 - 2r and we can proceed to solve for r using the Pythagorean theorem, as PreMath did. Then, we compute the area of the circle from r.
@zsoltszigeti758 Жыл бұрын
EBNO and CFON are similar deltoids, because the sum of the angles at O is 180, so (9-r)/r=r/(21-r) => r=63/10
@batavuskoga10 ай бұрын
I found the BC by the tangent theorem 30-2r, not by the Pitot theorem, I haven't heard of this before. I also dropped a perpendicular line onto AB Then you will find the solution using the Pythagorean theorem
@marioalb9726 Жыл бұрын
if we take the internal right triangle whose legs are '9-r' and 'r', and the other internal right triangle whose legs are '21-r' and 'r', we can apply similarity of triangles (9-r)/r = r/(21-r) r² = (9-r).(21-r) r² =189-30r+r² 30r=189 r=189/30 r=6,3 cm Area = π r² Area = 124,7cm² ( Solved √ ) and was not necessary to apply the pitot theorem
@Benbou969 Жыл бұрын
There needs a proof those triangles are similar.
@neelaramramesh3829 Жыл бұрын
Circlactular sir🎉🎉🎉kiddos to your noble work. I adore your presentation. Iam mathurious student ,could you please make a sum of all important geometrical theorems and formulations together in one whole video series.dhanyavaad from india
@PreMath Жыл бұрын
You are very welcome! Nice suggestion. So nice of you, Ramesh dear Thanks for your feedback! Cheers! You are awesome. Keep smiling👍 Love and prayers from the USA! 😀
@kennethstevenson976 Жыл бұрын
63/10 = 6.3 , If you are using 3.14 and working without a calculator the answer would be 124.6266 sq. un. 124.69 sq. un. is found when you use the Pi button on the calculator and round off to two decimal places. Great presentation made possible by knowledge of the Tangential Quadrilateral Theorem.
@AmirgabYT21857 ай бұрын
S=39,69π≈124,69
@marcelowanderleycorreia8876 Жыл бұрын
Prof. is it possible to solve such problem without this pitot theorem? Is there another way to sove it? Thank you so much!!
@EnnioPiovesan Жыл бұрын
Let R be the point of tangency between the circle and the side BC. Join O with C and B to form the angles COP=COR = α and BOR = BOQ = β. The sum of these 4 angles is 180° and consequently α and β are complementary. Triangles CPO and OQB are similar (both are right triangles, in P and Q respectively, and have α and β as one of the other angles). So we can write: PC:PO = OQ:QB Observe that PC = DC-DP=9-r QB=AP-AQ=21-r So we have: (9-r):r=r:(21-r) --> (9-r)·(21-r) = r² --> 9·21-9r-21r+r²=r² --> 9·21=r(9+21) --> r=3²·7·3/3·2·5 --> r=63/10. [...]
@gelbkehlchen Жыл бұрын
Solution: r = Radius of the circle. One can connect O with the touch points of the circle, down E, on the right side F and up G. And one can connect O with B and C. Then, because O lies on the bisecting line, you will see, that triangle EBO is congruent to OBF and triangle OFC is congruent to OCG. ⟹ EB = 21-r = FB and GC = 9-r = CF ⟹ CB = FB+CF = 21-r+9-r = 30-2r ⟹ Pythagoras: (2r)²+(21-9)² = CB² = (30-2r)² ⟹ 4r²+144 = 900-120r+4r² |-4r²-144+120r ⟹ 120r = 756 |/120 ⟹ r = 756/120 = 6,3 ⟹ Blue Area = π*r² = π*6,3² = 39,69π ≈ 124,6898
@Copernicusfreud Жыл бұрын
Yay!, I solved it with 39.69*(pi).
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀
@Law_Abiding_Citizen_ok Жыл бұрын
How is (2r)squared = 4rsquared at 8:42??
@dolphintoss Жыл бұрын
make a point P for point of tangent on the line CB According to Two-Tangent theorem line CP = 9-R line PB = 21-R therefore, line CB = 30-2R According to Pythagorean theorem line OC² = (9-R)² + R² line OB² = (21-R)² + R² line CB² = {(9-R)² + R²} + {(21-R)² + R²} = (30-2R)² 4R² - 60R + 522 = 4R² -120R + 900 60R = 378 R = 63/10 πR² = 3969π/100 ≈ 124.69
Don't think its possible to come to this channel and not find something new and worthwhile!
@PreMath Жыл бұрын
Glad you think so! Thanks for your continued love and support! You are awesome, John. Keep smiling👍 Love and prayers from the USA! 😀
@wackojacko3962 Жыл бұрын
@ 2:48 the answer was blurted out by the dog barking...it's a pretty smart dog. 🙂
@PreMath Жыл бұрын
My neighbor's dogs😀
@mayeradmin53428 ай бұрын
When you call AB a and CD b the solution is r = ab/(a + b)😀😀😀
@harikatragadda Жыл бұрын
∆OPC is Similar to ∆OQB. (9-r)/r = r/(21-r) r = 63/10
@ashieshsharmah1326 Жыл бұрын
How did you know these are similar
@harikatragadda Жыл бұрын
@@ashieshsharmah1326 If ∠QOB = θ, then, ∠POC = ½(π-2θ) = ½π - θ Hence ∠OCP = θ By *AAA* , ΔOPC is Similar to ΔOQB.
@ashieshsharmah1326 Жыл бұрын
@@harikatragadda thanks 🤩 , but could you please explain why poc = 1/2(π-theta)
@harikatragadda Жыл бұрын
@@ashieshsharmah1326 If K is the point of tangency of CB, then ∆POC is Congruent to ∆CKO, and hence ∠POC = ∠KOC. Similarly, ∠QOB = ∠KOB =θ Hence, ∠POC = ½∠POK = ½(π-∠QOK) = ½(π-2θ)
@ashieshsharmah1326 Жыл бұрын
@@harikatragadda thanks 🤩 . Very clever .
@giuseppemalaguti435 Жыл бұрын
((9-r)+(21-r))^2=(2r)^2+(21-r)^2...r=sqrt1980-39... Boh?? Ho sbagliato é 21-9...
@TTSchedule Жыл бұрын
This guy made it WAY too complicated. In less than a minute I had the answer. You subtract CD from AB (=12). That's the diameter of the circle, making the radius = 6. Square it = 36. Multiply 36 by pi (3.1415). Answer is 113.094