Another way without trigonometry : Draw bisector of angle BAC, AD. In triangle ACD , angle DAC is x, angle ADC is 2x. So triangle ADC is similar with triangle BAC. Triangle ABD has angles BAD and ABD equal with x, so is isosceles, so AD is equal with BD. Lets say AC is y and BD is a. So AD is a also. BD + CD is 12, so CD= 12- a From similar triangles we have : AD/AB = AC/BC = CD/AC, so a/10 = y/12 = 12-a/y > a = 10y/12, and in second equation we have y/12 = (12- 10y/12)/y -> y^2 = 144 - 10y, so y = 8 the only positive solution. We have all the sides, 8,10,12, so with Heron formula s = (8+10+12)/2 = 15 Aria = sqrt (15*7*5*3) = 15 sqrt7
@PreMath8 ай бұрын
Excellent! Thanks ❤️
@gibbogle8 ай бұрын
I did the same.
@thinker8218 ай бұрын
Sine rule: 10/sin(3x) = 12/sin(2x), expanding sin(2x) and sin(3x) and solving a quadratic in cos(x) gives cos(x) = either 3/4 or -1/3, the latter being impossible since 2x needs to be less than 180 degrees. Hence cos(x) = 3/4 and sin(x) = √7/4. Area = 1/2 c a sin B = 1/2 * 10 * 12 * √7/4 = 15√7.
@valentinebestofthevoiceall92898 ай бұрын
Yes, I've chosen the same way. It's easier, i think.
@rudychan87928 ай бұрын
Hey, this is my idea too^^ Sinus Rules! More Effective! Cut this video from 14' to 7' 😉
@PreMath8 ай бұрын
Thanks ❤️
@DanielNeedham25008 ай бұрын
How do you deduce the remaining angle is 3x to use the Sine rule?
@valentinebestofthevoiceall92898 ай бұрын
@@DanielNeedham2500 sin (180° - a) = sin a
@JSSTyger8 ай бұрын
You are one of the best geometry instructors on KZbin.
@Abby-hi4sf8 ай бұрын
So great to see how to solve it without trig! Beautiful question and solution
@PreMath8 ай бұрын
Glad you enjoyed it! Thanks ❤️
@jimlocke93208 ай бұрын
At 1:00, there is an implication that side AB is the base. Actually, side BC or side AC can be treated as the base. However, PreMath's solution is dependent on using AB as the base, so that is the reason why he chose AB as the base. There are probably other solutions that use the other sides as the base. Also, it is possible that using line segments to divide ΔABC into 2 or more triangles would produce solutions where AB is not used as the base. For example, once PreMath has values for h and a, he could have used CP as a common base of triangles ΔACP and ΔBCP and computed and added their areas to equal the area of ΔABC. As for the trigonometric solutions provided in the comments, these are great, but the title states that trigonometry is not used.
This is an application of inmo question 1998 . you can prove that a²= b(c+b) 144=10x + x² Just use quadratic formula to get x and appy herons formula Easier than your method
@溫文爾雅-q3f7 ай бұрын
Can you write down the specific calculation process?
@phungcanhngo5 ай бұрын
Thank you professor for amazing geometry.
@gibbogle8 ай бұрын
I drew a different line, bisecting CAB, meeting CB at D. Then triangles ABC and DAC are similar. Let w = AC, y = AD = BD, z = DC. z/w = w/12, i.e. z = (w^2)/12, and y/w = 10/12, i.e. y = (5/6)w But BC = BD + DC = y + z = (w^2)/12 + 5w/6 = 12, which gives w = 8 With s = (triangle perimeter)/2 = (a+b+c)/2 where a,b,c are the side lengths area = sqrt(s(s-a)(s-b)(s-c)) We have s = (12+10+8)/2 = 15 and area = sqrt(15*3*5*7) = sqrt(1575) = 15sqrt(7).
@bigm3838 ай бұрын
Quite convoluted but strangely satisfying!
@PreMath8 ай бұрын
Thanks ❤️
@misterenter-iz7rz8 ай бұрын
Using sin rule, trigonometric means yields a simpler solution, as 12/sin 2x=10/sin 3x, give cos x=3/4, so sin x=sqrt(7)/4, thus the area is 1/2×12×10×(sqrt(7)/4)=15sqrt(7).😊
@PreMath8 ай бұрын
Thanks ❤️
@溫文爾雅-q3f7 ай бұрын
能寫下具體的計算過程嗎?
@溫文爾雅-q3f7 ай бұрын
Can you write down the specific calculation process?
You successfully solve it without any means of trigonometry. 😮
@PreMath8 ай бұрын
Yes! Thanks ❤️
@jamestalbott44998 ай бұрын
Thank you!
@PreMath8 ай бұрын
You are very welcome! Thanks ❤️
@prossvay87448 ай бұрын
Area of the triangle=1/2(12)(10)sin(41.41)=39.69 square units.❤❤❤ Thanks sir.
@PreMath8 ай бұрын
Great job! You are very welcome! Thanks ❤️
@溫文爾雅-q3f7 ай бұрын
Can you write down the specific calculation process?
@giuseppemalaguti4358 ай бұрын
Teorema dei seni 10/sin3x=12/sin2x....risulta cosx=3/4...A=12*10*sinx/2=15√7
@PreMath8 ай бұрын
Excellent! Thanks ❤️
@溫文爾雅-q3f7 ай бұрын
Can you write down the specific calculation process?
@davidstaphnill96368 ай бұрын
Could you explain please why you replaced the 2 in the numerator with 1/4😊
@shrikrishnagokhale35573 ай бұрын
I was wrong in taking a=18instead of 8.Corrected myself.Thanks.
@shrikrishnagokhale35573 ай бұрын
Using Heron's formula my answer is 40√2sq.unit
@alster7248 ай бұрын
After seeing the quadratic equation, I did basic factoring instead of quadratic formula
@joeschmo6228 ай бұрын
Magic!
@PreMath8 ай бұрын
Glad to hear that! Thanks ❤️
@professorrogeriocesar8 ай бұрын
Problema maravilhoso. Muito obrigado. Fiz de outra forma, traçando a bissetriz relativa ao ângulo A. Muito obrigado e parabéns!!
@PreMath8 ай бұрын
You are very welcome! Thanks ❤️
@ОльгаСоломашенко-ь6ы8 ай бұрын
Можно без дополнительных построений. Применяя теорему синусов и синус тройного угла, находит тригонометрическую функцию x. Удобнее cos( x)=0.75. Зная cos( x) находим sin( x), высоту, проведённую к стороне AB.
@PreMath8 ай бұрын
Thanks ❤️
@溫文爾雅-q3f7 ай бұрын
Can you write down the specific calculation process?
@ОльгаСоломашенко-ь6ы7 ай бұрын
@@溫文爾雅-q3f BC/sin(2x)=AB/sin(180-3x), 12/sin(2x)=10/sin(3x), we use the reduction formula. sin(3x)=3sin(x)-4sin^3(x). Substitute 12/(2sin(x)*cos(x))=10/(3sin(x)-4sin^3(x)). We reduce everything that is possible and get 3/cos(x)=5/(3-4sin^2(x)). We replace the sine with the cosine on the right side of the equality using the basic trigonometric identity sin^1(x)+cos^2(x)=1. 3/cos(x)=5/(3-4+4cos^2(x)). 3/cos(x)=5/(4cos^2(x)-1). After the transformations, we obtain the quadratic equation 12cos^2(x)-5cos(x) -3=0. This equation has 2 roots, one of which is negative, which cannot be. cjs(x)=0.75. We find sin(x)=√1-0,75:2=√7/4 and the area according to the formula.
@溫文爾雅-q3f7 ай бұрын
@@ОльгаСоломашенко-ь6ы Great, this is what I needed, thank you!
@ОльгаСоломашенко-ь6ы7 ай бұрын
@@溫文爾雅-q3f According to the sine theorem CB/sin(2x)=AB/sin(180-3x), 12/sin(2x)=10/sin(3x), we use the reduction formula. sin(3x)=3sin(x)-4sin^3(3x). 12/(2sin(x)*cos(x))=10/(3sin(x)-4sin^3(x). We're cutting everything we can. 3/cos(x)=5/(3-4sin^2(x)). We use the basic trigonometric identity sin^2(x)+cos^2(x)=1. 3/cox(x)=5/(3-4sin^2(x)). After the transformations, we get a quadratic equation with respect to cos(x), which has two roots, one of which is negative, which is impossible. So cos(x)=0.75. sin(x)=√1-(0,75)^2=√7/4. S=0.5*12*10 * sin(x)=15√7.
@marcgriselhubert39158 ай бұрын
The area of the triangle is (1/2).BA.BC.sin(x) = (1/2).10.12.sin(x) = 60.sin(x). Now let(s calculate sin(x) We have: sin(x)/AC = sin(2.x)/12 = sin(180° -3.x)/10 in triangle ABC, so 10.sin(2.x) = 12.sin(3.x), or 5.sin(2.x) = 6.sin(3.x) Then: 5.2.sin(x).cos(x) = 6.(3.sin(x) - 4.(sin(x))^3) We divide by sin(x) which is non equal to 0: 10.cos(x) =18 - 24.(sin(x))^2 We simplify by 2 and replace (cos(x))^2 by 1 - (sin(x))^2, we obtain: 5.cos(x) = 9 -12.(1 -(cos(x)^2) or: 12.(cos(x)^2 -5.cos(x) -3 =0 Delta = (-5)^2 -4.12.(-3) = 25 +144 = 169 = (13)^2, so cos(x) = (5 -13)/24 = -1/3 which is rejected as negative, or cos(x) = (5 +13)/24 = 18/24 = 3/4 Then (cos(x)) = 9/16 and (sin(x))^2 = 1 - (9/16) = 7/16 and sin(x) = sqrt(7)/4 (as sin(x)>0, 0
@PreMath8 ай бұрын
Thanks ❤️
@marcgriselhubert39158 ай бұрын
At the last line, please naturaly read : .... Area = 60.sin(x) = 15.sqrt(7).
@CloudBushyMath8 ай бұрын
Interesting
@PreMath8 ай бұрын
Glad to hear that! Thanks ❤️
@wackojacko39628 ай бұрын
One needs to have a measured sense of reason to solve this problem. 🙂
@PreMath8 ай бұрын
Thanks ❤️
@sergiocasavecchia58194 ай бұрын
Who grants that point T really exists ? And if angle CAB is greater than 90° ? You should demonsrrate first that 2x < 90° (without using trigonomerry ...)
@himadrikhanra746326 күн бұрын
30 square unit ? Angles are in arithmetic progression
@pralhadraochavan51798 ай бұрын
Good night sir
@PreMath8 ай бұрын
Same to you❤️
@sorourhashemi32498 ай бұрын
How do you know the angle CTA is 2x?
@johnbrennan33728 ай бұрын
By construction he made it equal to 2x
@unknownidentity28468 ай бұрын
Let's find the area: . .. ... .... ..... Let's introduce a point D on BC such that ∠BAD=x. Then we have two triangles ABD and ACD with: ∠BAD = x ∠ABD = x ∠ADB = 180° − ∠BAD − ∠ABD = 180° − 2x ∠CAD = x ∠ADC = 180° − ∠ADB = 180° − (180° − 2x) = 2x ∠ACD = 180° − ∠CAD − ∠ADC = 180° − x − 2x = 180° − 3x Therefore ABD is an isosceles triangle (AD=BD) and the triangles ABC and ACD are similar: AB/AD = AC/CD = BC/AC AC/CD = BC/AC ⇒ AC² = CD*BC AB/AD = AC/CD AB²/AD² = AC²/CD² AB²/AD² = CD*BC/CD² AB²/AD² = BC/CD AB²/AD² = BC/(BC − BD) AB²/AD² = BC/(BC − AD) 10²/AD² = 12/(12 − AD) 100/AD² = 12/(12 − AD) 25/AD² = 3/(12 − AD) 300 − 25*AD = 3*AD² 3*AD² + 25*AD − 300 = 0 AD = [−25 ± √(25² + 4*3*300)] / (2*3) = [−25 ± √(625 + 3600)] / 6 = (−25 ± √4225) / 6 = (−25 ± 65) / 6 Obviously only one of the two solutions is useful: AD = (−25 + 65)/6 = 40/6 = 20/3 Since ABD is an isosceles triangle, it can be divided into two congruent right triangles. So we can conclude: cos(x) = (AB/2)/AD = (10/2)/(20/3) = 5*3/20 = 3/4 sin(x) = √(1 − cos²(x)) = √(1 − 9/16) = √(7/16) = √7/4 Finally we are able to calculate the area of the triangle ABC: A(ABC) = (1/2)*AB*BC*sin(x) = (1/2)*10*12*√7/4 = 15√7 Best regards from Germany
@unknownidentity28468 ай бұрын
I also made a comment with an alternative solution to the problem you published yesterday. I'm looking forward to your opinion.
Looks Complicated, Messy, Too Long. Sinus Rules, Please: sin(3x) ÷ 10 = sin2x ÷ 12 sin3x / sin2x = 10/12 ... do the rest, you will get 12p"-5p -3 = 0 ; p = cos x = 3/4 Turn into sin x = √7 ÷ 4 Area = (1/2)•10•12•(√7/4) = 15√7 = 39,7 sq units Much-much Easier\Practical. --- Anyway, i'll give you thumbsup, anyway^ "Longtime no see" Dec'23 today Mar'24 😉 👍