Can you find area of the Pink Quadrilateral? | (Nice Geometry problem) |

  Рет қаралды 51,075

PreMath

PreMath

Күн бұрын

Learn how to find the area of the Pink Quadrilateral. Important Geometry and Algebra skills are also explained: area of a triangle formula; isosceles triangles; Pythagorean Theorem. Step-by-step tutorial by PreMath.com
Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
Step-by-step tutorial by PreMath.com
• Can you find area of t...
Need help with solving this Math Olympiad Question? You're in the right place!
I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
/ premath
Can you find area of the Pink Quadrilateral? | (Nice Geometry problem) | #math #maths
Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
#FindPinkArea #PinkQuadrilateral #QuadrilateralArea #PythagoreanTheorem #IsoscelesTriangles #RightTriangles #Triangle #AreaOfSquare #SimilarTriangles #AreaOfTriangle #CircleTheorem #GeometryMath #EquilateralTriangle #PerpendicularBisectorTheorem
#MathOlympiad #ThalesTheorem #RightTriangle #RightTriangles #CongruentTriangles
#PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the Radius
Equilateral Triangle
Pythagorean Theorem
Area of a circle
Area of the sector
Right triangles
Radius
Circle
Quarter circle
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun
Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

Пікірлер
@jamestalbott4499
@jamestalbott4499 7 ай бұрын
Thank you!
@PreMath
@PreMath 7 ай бұрын
You are very welcome! Thanks ❤️
@jimlocke9320
@jimlocke9320 7 ай бұрын
At 3:45, BD has been constructed, dividing quadrilateral ABCD into 2 triangles, ΔABD and ΔBCD. We find that length BD is 13. First, let's find the area of ΔABD. In the video, a method is shown. An alternative method of finding the area of ΔABD is to construct 3 triangles congruent to it and assemble the 4 triangles into a square with sides of length 13. The area of the square is (13)² = 169. The area of each triangle is 1/4 of that square, or 169/4. Now to find the area of ΔBCD. Drop a perpendicular from D to BC, dividing ΔBCD into 2 15°-75°-90° triangles. The 15°-75°-90° triangle appears frequently enough in geometry problems that I feel all of us should know its properties. One of the properties is that the area is equal to the hypotenuse squared, divided by 8. So each triangle has area (13)²/8 = 169/8 and the combined area is twice that, or 169/4. The total area of the quadrilateral is 169/4 + 169/4 = 169/2, as PreMath also found. Of interest, the area of the quadrilateral is equal to the area of a square with sides equal to length AB or AD. If we construct a square ABED, working back from the solution, we know that the enclosed white triangular area must equal the shaded triangular area outside ABED. Once we find these 2 triangles are equal in area, as well as find the length of the square's diagonal, we have an alternative method of finding the area. However, this solution method is certainly more challenging than the actual method used!
@PreMath
@PreMath 7 ай бұрын
Thanks for the feedback ❤️
@jimlocke9320
@jimlocke9320 7 ай бұрын
Solving it a straightforward but hard way: Construct a line parallel to AD and through point C. Drop a perpendicular to it from D and label the intersection as point E. Drop a perpendicular to it from B and label the intersection as point F. ADEF is a rectangle. The shaded area region is equal to the area of ADEF less the areas of ΔCDE and ΔBCF. We note that ΔCDE is a 15°-75°-90° right triangle with known hypotenuse. Applying the known ratio of sides of a 15°-75°-90° right triangle: (√3 - 1):(√3 + 1):(2√2), DE = (13)(√3 + 1)/(2√2) and CE = (13)(√3 - 1)/(2√2). Let AB = AD = x. From properties of a rectangle, EF = AD = x. EF = CE + CF, so CF = EF - CE = x - (13)(√3 - 1)/(2√2). ΔBCF is a 30°-60°-90° right triangle. The long side is √3 times as long as the short side. So, CF = (√3)BF and BF = CF/√3. We note that AF = AB + BF and AF = DE, so AB + BF = DE. x + (x - (13)(√3 - 1)/(2√2))/√3 = (13)(√3 + 1)/(2√2). I solved this equation for x and got x = 13/(√2) after a lot of mathematical manipulation. Then, I went back and got BF = (13)(√2)(√3 - 1)/4. The area of the rectangle is (AD)(AF) = (AD)(AD + BF) = (13/√2)((13/√2 + (13)(√2)(√3 - 1)/4). The area of a 15°-75°-90° right triangle, ΔCDE in this case, is hypotenuse squared divided by 8, or (13)²/8 The area of a 30°-60°-90° right triangle is (1/2)(short side)(long side), but the long side is √3 times as long as the short side, so for ΔBCF, (1/2)((13)(√2)(√3 - 1)/4)²(√3). If you write an equation for the area of the rectangle less the areas of the two triangles and do the mathematical manipulation to solve the equation, you should find that the shaded area is 169/2 = 84.5 square units, as I did.
@CloudBushyMath
@CloudBushyMath 7 ай бұрын
Superb!👍
@PreMath
@PreMath 7 ай бұрын
Thank you! Cheers!🌹
@dhronegajjar1420
@dhronegajjar1420 7 ай бұрын
Just remember if any side of quadrilateral is = it's diagonal then just do( side²/2) =13²/2
@ChuzzleFriends
@ChuzzleFriends 7 ай бұрын
Use the Corollary to the Polygon Interior Angle Sum Theorem (or the theorem itself). m∠A + m∠ABC + m∠C + m∠ADC = 360° 90° + 120° + m∠C + 75° = 360° m∠C + 285° = 360° m∠C = 75° Connect points B and D. This diagonal forms isosceles right △BAD. So m∠ABD = m∠ADB = 45°. Use the Angle Addition Postulate. m∠ABD + m∠CBD = m∠ABC 45° + m∠CBD = 120° m∠CBD = 75° m∠ADB + m∠BDC = m∠ADC 45° + m∠BDC = 75° m∠BDC = 30° So, △BDC is isosceles. BD = CD = 13 by the Base Angles Converse. △BAD is an isosceles right triangle. c = a√2 13 = (AB)√2 AB = 13/(√2) AB = AD = (13√2)/2 Pink Quadrilateral ABCD Area = △BAD Area + △BDC Area A = (bh)/2 = 1/2 * (13√2)/2 * (13√2)/2 = 42.25 A = 1/2 * a * b * sinC = 1/2 * 13 * 13 * sin(30°) = 42.25 ABCD Area = 42.25 + 42.25 = 84.5 So, the area of the pink quadrilateral is 84.5 square units.
@PreMath
@PreMath 7 ай бұрын
Excellent! Thanks for sharing ❤️
@prossvay8744
@prossvay8744 7 ай бұрын
Connect B to C AB=AD LADB=LABD=45° and LBDC=30° ; LCBD=75° So LCBD=180°-30°-75°=75° BD=DC=13 Let AB=AD=x In ∆ABD x^2+x^2=BD^2 2x^2=13^2=169 x=13/√2 Area of the ABCD=area of ∆ABD + area of ∆DBC Area of ∆ABD=1/2(13/√2)^2=169/4 square units Area of ∆DBC=1/2(13)^2sin(30°)=169/4 square units So area of ABCD=2(169/4)=169/2=84.5 square units. Thanks Sir.❤❤❤
@adhiraj073
@adhiraj073 7 ай бұрын
Connect B to D*
@PreMath
@PreMath 7 ай бұрын
You are very welcome! Thanks for sharing ❤️
@JangirBK
@JangirBK 7 ай бұрын
The same one as above, but in short 🤙
@sergeyvinns931
@sergeyvinns931 7 ай бұрын
Draw DB, angie ADB = angie ABD = 45 degrees, angie BDC = 30 degrees, angieDBC = angie DCB, DC = DB =13. Area trangie ABD = 13^2/4 = 42,25. Area trangie BCD = 13^2*sin 30/2 = 42,25. Area of the Pink Quadriter5ai = 84,5!
@PreMath
@PreMath 7 ай бұрын
Excellent! Thanks for sharing ❤️
@kennethstevenson976
@kennethstevenson976 7 ай бұрын
I found the area of the first triangle using 2x^2 = 13^2 ; x^2 = 169/2 ; x = 169/4 ; x = 42.25. The A = 1/2 (13)(13) sin(30) was needed for the area of the second triangle. Total area = 84.5 square units.
@Ihsan403
@Ihsan403 7 ай бұрын
It is a woderful exercise❤
@PreMath
@PreMath 7 ай бұрын
Thanks Ihsan dear ❤️🙏
@phungpham1725
@phungpham1725 7 ай бұрын
1/ Connect DB. We have the triangle DAB is a right isosceles and the triangle BDC is a isosceles of which the each of base angles = 75 degrees and the angle BDC= 30 degrees. So we have BD= 13 and AD=AB=a=13/sqrt2 Notice that the height from A to BD = the height from C to DB= 13/2 ( from C just drop the height to BD, we have a special 30-90-60 triangle of which the height= DC/2 So the area of the two triangles DAB and BDC are equal ( same base, same height) Area of the quadrilateral = sq a= 169/2= 84.5 sq units
@PreMath
@PreMath 7 ай бұрын
Excellent! Thanks for sharing ❤️
@santokhsidhuatla7045
@santokhsidhuatla7045 7 ай бұрын
JoinBD, In triangle ABD, Angle BDA=45 Angle BDA=45 In triangle DBC, angleDBC=75, angleDCB=75 CD=BD=13 DA=AB=13/under root 2 In triangle CBD, perpendicular =6.5 Area=1/2x13x6.5=42.5 1/2x13/ur2x13/ur2=42.5 Total=84.5 square units
@AmirgabYT2185
@AmirgabYT2185 7 ай бұрын
S=84,5😊
@PreMath
@PreMath 7 ай бұрын
Thanks for sharing ❤️
@himo3485
@himo3485 7 ай бұрын
ABCD=ADB+CBD ADB=13*6.5/2=42.25 CBD=13*6.5/2=42.25 ABCD=42.25+42.25=84.5
@PreMath
@PreMath 7 ай бұрын
Excellent! Thanks for sharing ❤️
@alster724
@alster724 7 ай бұрын
Very easy. Although there is no need for the oblique triangle area though for ∆BAD since it is already a rt∆. Instead, I use the basic triangle area formula (A= bh/2) since AD is the height and AB is the base. I only use the oblique area for ∆BCD since there is no height. Regardless, I got the same answer. Side note as well, I used the special properties of a 45-45-90 for ∆BAD which are c= b√2 or a√2 and the legs are equal.
@TTTT-h5k
@TTTT-h5k 6 ай бұрын
👍
@wackojacko3962
@wackojacko3962 7 ай бұрын
No matter how one looks at this situation, the element that the sum of the interior angles of a quadrilateral is always 360 degrees must always be included. People have jobs...me I don't work , I just get paid. 🙂
@PreMath
@PreMath 7 ай бұрын
Thanks for the feedback ❤️ Stay blessed!
@justshubham8117
@justshubham8117 7 ай бұрын
Did it orally 🙌
@santiagoarosam430
@santiagoarosam430 7 ай бұрын
∠ADB=45º=∠DBA→ ∠BDC=30º : ∠DBC=120º-45º=75º→ ∠DCB=180º-30º-75º=75º→ DC=13=DB. Transformamos el triángulo DBC en otro de superficie equivalente, desplazando el vértice C según una línea ascendente paralela a BD hasta alcanzar la horizontal por D y la vertical por B, obteniendo el punto "T"→ ABTD es un cuadrado y su diagonal es DB=13→ Áreas ABCD=ABTD=13²/2=169/2=84,50. Gracias y un saludo cordial.
@Birol731
@Birol731 7 ай бұрын
My solution is ➡ if we draw a line between D and B we get 2 triangles: ΔABD is a isosceles right angle triangle: ∠DAB ∠ABD = ∠BDA ⇒ ∠ABD = ∠BDA = 45° the other triangle is ΔDBC ∠ABC = 120° ∠ABD= 45° ⇒ ∠DBC= 75° ∠CDA= 75° ∠BDA= 45° ⇒ ∠CDB= 30° ⇒ ∠BCD= 180°-(∠DBC+∠CDB) ∠BCD= 180°-(75°+30°) ∠BCD= 75° ⇒ ΔDBC is an isosceles triangle ! CD= DB= 13 according to the Pythagorean theorem for the ΔABD a²+a²= b² 2a²= 13² 2a²= 169 a²= 169/2 ⇒ A(ΔABD)= a*a/2 A(ΔABD)= a²/2 A(ΔABD)= (169/2)/2 A(ΔABD)= 169/4 square units. A(ΔDBC)= 1/2*sin(CDB)*CD*DB ∠CDB= 30° CD= 13 DB= 13 ⇒ A(ΔDBC)= 1/2*sin(30°)*13*13 A(ΔDBC)= 1/2*1/2*13*13 A(ΔDBC)= 169/4 square units Apink= A(ΔABCD) Apink= A(ΔABD) + A(ΔDBC) Apink= 169/4 + 169/4 Apink= 338/4 Apink= 84,5 square units ✅
@PreMath
@PreMath 7 ай бұрын
Excellent! Thanks for sharing ❤️
@unknownidentity2846
@unknownidentity2846 7 ай бұрын
Let's find the area: . .. ... .... ..... First of all we divide the quadrilateral into two triangles: ABD and BCD. Since ABD is an isosceles right triangle, we can conclude: ∠ABD = ∠ADB = (180° − ∠BAD)/2 = (180° − 90°)/2 = 90°/2 = 45° ⇒ ∠CBD = ∠ABC − ∠ABD = 120° − 45° = 75° ∧ ∠BDC = ∠ADC − ∠ADB = 75° − 45° = 30° ⇒ ∠BCD = 180° − ∠CBD − ∠BDC = 180° − 75° − 30° = 75° Therefore BCD is also an isosceles triangle (∠CBD=∠BCD), so we can conclude: BD = CD = 13 Now we apply the Pythagorean theorem to calculate the area of the isosceles right triangle ABD: BD² = AD² + AB² = AB² + AB² = 2*AB² ⇒ AB² = BD²/2 ⇒ A(ABD) = (1/2)*AB*AD = (1/2)*AB² = (1/2)*BD²/2 = (1/2)*13²/2 = 169/4 The area of the isosceles triangle BCD can be calculated in the following way: A(BCD) = (1/2)*BD*CD*sin(∠BDC) = (1/2)*CD²*sin(∠BDC) = (1/2)*13²*(1/2) = 169/4 So the two triangles ABD and BCD have the same area and the total area turns out to be: A(ABCD) = A(ABD) + A(BCD) = 169/4 + 169/4 = 169/2 = 84.5 Best regards from Germany
@PreMath
@PreMath 7 ай бұрын
Excellent! Thanks for sharing ❤️
@LuisdeBritoCamacho
@LuisdeBritoCamacho 7 ай бұрын
Let's do it!! 1) AB = AD 2) Draw a Line from Point B to Point D 3) Depict a Right Triangle with Sides AB ; AD ; BD 4) Observe that, if AB = AD we have a Right Triangle [ABD] with Internal Angles (45º ; 45º ; 90º) 5) Angle ABD = 45º, so : Angle DBC = 120º - 45º = 75º. And Angle BCD = Angle DBC = 75º 6) Angle ADB = 45º, so : Angle BDC = 75º - 45º = 30º 7) Now it's clear for all, that Triangle BCD is an Isosceles Triangle with Internal Angles (30º ; 75º ; 75º) 8) So : BD = CD = 13 9) Let consider that AB = AD = X 10) X^2 + X^2 = 169 ; 2X^2 = 169 ; X^2 = 169 / 2 ; X = 13 / sqrt(2) ; X = 13*sqrt(2) / 2 ~ 9,2 11) Area of Right Triangle [ABD] = 2A = (13*sqrt(2) / 2)^2 ; 2A = 169 / 2 ; A = 169 / 4 ; A ~ 42,25 12) Finding the Area of Isosceles Triangle [BCD] 13) 13 / sin(75º) = BC / sin(30º) ; BC = 13*sin(30º) / sin(75º) ; BC = 6,5 / sin(75º) ; BC ~ 6,73 14) Triangle [BCD] with Side Lengths (13 ; 13 ; 6,73) Using Heron's Formula (Online Calculator): 14) A = 42,25 15) Total Area = 42,25 + 42,25 = 84,50 16) My Best Answer is Area = 84,50 Square Units Working with Windows Calculator is an inferno!!
@PreMath
@PreMath 7 ай бұрын
Excellent! Thanks for sharing ❤️
@mouradbelkas598
@mouradbelkas598 7 ай бұрын
Another solution is, once AB and AD are known, Area = 1/2 (AB + 13) * AD
@quigonkenny
@quigonkenny 7 ай бұрын
Draw BD. As DA = AB, ∆DAB is an isosceles triangle, and as ∠DAB = 90°, ∠ABD = ∠BDA = 45°. Let DA = AB = x. As BD divides ∠ABC and ∠CDA, ∠DBC = 120°-45° = 75°, and ∠CDB = 75°-45° = 30°. Thus ∠BCD = 180°-(30°+75°) = 75°, ∆CDB is an isosceles triangle, and CD = DB = 13. Triangle ∆DAB: DA² + AB² = BD² x² + x² = 13² 2x² = 169 x² = 169/2 x = √(169/2) = 13/√2 Quadrilateral ABCD: A = [DAB] + [CDB] A = bh/2 + absinC/2 A = (13/√2)(13/√2)/2 + (13)(13)sin(30°)/2 A = (169/2)/2 + 169(1/2)/2 A = 169/4 + 169/4 = 169/2 sq units
@PreMath
@PreMath 7 ай бұрын
Excellent! Thanks for sharing ❤️
@abhikDebnath403
@abhikDebnath403 7 ай бұрын
How?
@吃饭睡觉打豆豆-j6e
@吃饭睡觉打豆豆-j6e 6 ай бұрын
i don’t know why the areaBCD=1/2*13*13*sin30? Someone can explain?
@marcgriselhubert3915
@marcgriselhubert3915 7 ай бұрын
Fine.
@PreMath
@PreMath 7 ай бұрын
Thanks for the feedback ❤️
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
How to Solve Partial Fraction with Improper Fraction
6:50
Demoj Maths And Science Tutors
Рет қаралды 1,4 М.
Circle Theorems - GCSE Higher Maths
13:53
1st Class Maths
Рет қаралды 560 М.
Russian Math Olympiad | A Very Nice Geometry Problem
14:34
Math Booster
Рет қаралды 130 М.