You are very welcome! Thanks for your feedback! Cheers! 😀 You are the best❤️. Keep it up 👍
@bigm383 Жыл бұрын
@@PreMath😂😀
@HappyFamilyOnline Жыл бұрын
Amazing 👍 Thanks for sharing 😊
@CharlesB147 Жыл бұрын
That is a clever little solution trick, using a double sine to set the equations exactly equal to each other.
@KAvi_YA666 Жыл бұрын
Thanks for video.Good luck sir!!!!!!!!!!!!!
@harikatragadda Жыл бұрын
Draw a circle with C as the center passing through A and B. Extend AC to E and AD to G on the circle to make a right triangle AGE. Drop a perpendicular CF on AG, and since ∠CDF = 30° and CD= 4, we have CF = 2. By proportion, EG = 2CF = 4. We now have ∆ABE Congruent to ∆AGE since ∠AEB = ∠EAG = 24° and their Hypotenuse is equal to the diameter. Hence EG = AB = X = 4
@timeonly1401 Жыл бұрын
Wow!! Nicely done! I LOVE geometry-only solutions. For almost all these problems, I haven't been able to see them (YET!), but I appreciate them when I see others present them! I'm working on it! LOL.. 😅
@wackojacko3962 Жыл бұрын
@ 5:27 the perpendicular CE on AB is the perpendicular bisector of the base of isosceles triangle CAB and also the angle bisector of the vertex angle ACB. A beautiful isosceles angle theorem! 🙂
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@arnavkange1487 Жыл бұрын
You are amazing
@PreMath Жыл бұрын
Thank you! Cheers! 😀 You are awesome. Keep it up 👍
@jimlocke9320 Жыл бұрын
Solution by construction (no trigonometry). Extend AD to the right. Drop a perpendicular to the extended AD and call the intersection F. Note that, at 3:27, PreMath determines that
@sumithpeiris8440 Жыл бұрын
Easy Pure Geometry Solution Let H be the midpoint of AB, let AD meet AH at E, BC at F and the perpendicular to AF from C at G Triangle CDG is a 30-60-90 Triangle, so CG = 4/2 = 2 Now
@zupitoxyt Жыл бұрын
It need a diagram
@arnavkange1487 Жыл бұрын
This law of sines was new for me
@PreMath Жыл бұрын
Excellent! You are awesome. Keep it up 👍
@mibsaamahmed Жыл бұрын
It's nice that you learned something new
@th3smurf692 Жыл бұрын
It's an important law 👍
@Copernicusfreud Жыл бұрын
Yay!, I solved the problem.
@AndreyDanilkin Жыл бұрын
ACB - 66;48;66. ADC - 24;150;6. Let's flip the triangle ADС along side AC (change points A and С). Now
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
Find length “a” by sine rule and then use cosine rule in triangle ABC.
@mibsaamahmed Жыл бұрын
Can someone tell me an interesting tooic related to geometry or trigonometry to study
@marioalb9726 Жыл бұрын
Isósceles triangle: β = 44° + 22° = 66° α = 180° - 2 . 66° = 48° Internal triangle: γ = 48° - 42° = 6° θ = 180° - 6° - 24° = 150° Sine rule: a / sin 150° = 4 / sin 24° a = 4,917 cm x = 2 . a. cos 66° x = 4 cm ( Solved √ )
@devondevon4366 Жыл бұрын
x=4 Angle B = 66 (since the triangle is an isosceles) Angle C = 48 (180 - 132) Hence the angles of triangle ADC: 6, 150, and 24 (degrees). Since you now have Angle Side Angle: 6, 4, and 150, you can use the sine formulae a/sine a = b/sine B to get the length of AC = 4.917. Hence the length of BC= 4.917 ( since the triangle is an isosceles) Since you again have Angle Side Angle: 48 degrees, 4.917 unit, and 66 degrees, you can again use the sine formulae to get x=4 Answer
@MarieAnne. Жыл бұрын
At 0:11 you mention that ∠ADC = 24°. I think you meant ∠DAC.
@じーちゃんねる-v4n Жыл бұрын
From the law of sine AC=4sin150/sin24 ∴x=2ACcos66=8sin30cos66/sin24=4
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@Golololololo Жыл бұрын
Thanks for your helpful videos Can I send you a question, sir? If yes, how?
@giuseppemalaguti435 Жыл бұрын
x=4sin30sin48/sin24cos24=4*1/2*2=4
@devondevon4366 Жыл бұрын
4
@unknownidentity2846 Жыл бұрын
Ok, lets have a try: . .. ... .... ..... AC = BC ⇒ ∠BAC = ∠ABC = 24° + 42° = 66° ⇒ ∠ACB = 180° − ∠ABC − ∠BAC = 180° − 66° − 66° = 48° ⇒ ∠ACD = ∠ACB − ∠BCD = 48° − 42° = 6° ⇒ ∠ADC = 180° − ∠CAD − ∠ACD = 180° − 24° − 6° = 150° AC/sin(∠ADC) = CD/sin(∠CAD) AC/sin(150°) = 4/sin(24°) AC/(1/2) = 4/sin(24°) AC = 2/sin(24°) AB/sin(∠ACB) = AC/sin(∠ABC) x/sin(48°) = (2/sin(24°))/sin(66°) x = 2*sin(48°) / [sin(24°)*sin(66°)] x = 2*sin(2*24°) / [sin(24°)*cos(90°−66°)] x = 2*2*sin(24°)*cos(24°) / [sin(24°)*cos(24°)] x = 4 Best regards from Germany
@JSSTyger Жыл бұрын
x = 4
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍