Glad you think so! Thanks for your feedback! Cheers! You are the best, Sadaf Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@張茗茗-y9i2 жыл бұрын
Set x=cos(c)+i sin(c)=exp(ic), and c=π/3 (by Taylor Series for exponential-trigonal complex function at c=0) x^7777=exp(i*7777c)=exp(i*(2592+1/3)*π)=exp(i*π/3)=x
@SuperYoonHo2 жыл бұрын
WOW! That was brilliant teacher! You are awesome! God bless you for your good work🙏🙏
@HappyFamilyOnline2 жыл бұрын
Another great video👍 Thanks for sharing😊
@bigm3832 жыл бұрын
Two great methods!😀👍
@BlipBlop77032 жыл бұрын
Amazing work and amazing math fact to appreciate.
@PreMath2 жыл бұрын
Excellent! Glad you think so! Thanks for your feedback! Cheers! You are awesome, Patrick. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@davidfromstow2 жыл бұрын
Brilliant question and explanation - thank you
@PreMath2 жыл бұрын
Glad you enjoyed it! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@nirupamasingh29482 жыл бұрын
Sir l liked both methods. Wish to see more of typical complex number problems.
@PreMath2 жыл бұрын
Excellent! Thanks for your feedback! Cheers! You are awesome, Niru. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@dreael2 жыл бұрын
Here we have the classic unit vector on the complex plane: x=(1+sqrt(3)*i)/2 represents a 60° vector. So x^n -> x^(n+1) will rotate this vector 60° counterclockwise. n=6 means that the 360° position is the 0° position again, which implies x^6=1 Since 7777=1296*6+1 this means that our complex plane vector rotates 1296 times a whole 360° turn an then a single 60° turn again which results into the solution as shown in the video.
@raymondarata6549 Жыл бұрын
I did the problem the same way. It is a quick and eloquent solution.
@KipIngram2 ай бұрын
Note that this complex number has unit magnitude: sqrt(1^2 + (sqrt(3))^2) = sqrt(1 + 3) = sqrt(4) = 2, and 2/2 = 1. So the result will also be a unit complex number. To raise a complex unit vector to a power, we just multiply its angle by the power and take that mod 360 degrees. Here our angle is arctan(sqrt(3)), which is 60 degrees. So, 60*7777 = 466,620, and 466,620 mod 360 is 60 again. So the result is identical to the argument: ((1+i*sqrt(3)/2)^7777 = (1+i*sqrt(3))/2
@242math2 жыл бұрын
excellent presentation
@marcello36212 жыл бұрын
First, we have to put the number x in the trigonometrical form, then we solve the exponent: ρ = √(1/2)² + (√3/2)² ρ = √ 1/4 + 3/4 ρ = √1 *ρ = 1* Let's find cosine and sine of the x argument, in the complex plane, its afixes are seen in the first quadrant, so the argument is greater than 0° and less than 90°, then: sin arg x = √3/2 / 1 = √3/2 cos arg x = 1/2 / 1 = 1/2 Argument of x = 60° So, its trigonometrical form equals x = cos 60° + i sin 60° By the First Theorem of Moivre: x⁷⁷⁷⁷ = cos (60° × 7777) + i sin (60° × 7777) x⁷⁷⁷⁷ = cos 466 620° + i sin 466 620° To solve this is not that hard, just reduce to the first quadrant. 466 620°/ 360° = 1296,1666666... = 1296 + 0,1666... = *1296 + 1/6* It means that the angle rounded the cicle 1296 times and stopped in 1/6 of 360°, i.e., stopped in 60°. Then: x⁷⁷⁷⁷ = cos 60° + i sin 60° x⁷⁷⁷⁷ = 1/2 + i(√3/2) *x⁷⁷⁷⁷ = 1 + √3 i / 2* What a weird surprise! It's equal to x!
@oenrn2 жыл бұрын
It is certainly not equal to x! 😜
@-EaswarNaik2 жыл бұрын
Since power is odd.... for every odd power the answer is same ...simply solve it for power = 3 and ans is -1
@PreMath2 жыл бұрын
Thanks for your feedback! Cheers! You are awesome, Naik. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@KAvi_YA6662 жыл бұрын
Thanks for video.Good luck sir!!!!!!!!
@PreMath2 жыл бұрын
Thank you too You are awesome. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@justabunga12 жыл бұрын
There is a third method to figure out this problem, which is to use De Moivre's theorem (cis(x))^n=cos(nx)+isin(nx) where cis(x) is cos(x)+isin(x) and n is an integer and convert everything in polar form in the form re^(iθ)=cis(θ). We need to find when cos(x)=1/2 and sin(x)=√(3)/2. We know that the first equation is x= π/3+2πk and 5π/3+2πk and second equation is x=π/3+2πk and 2π/3+2πk where k is an integer. There Both equations have one answer in common, which is x=π/3+2πk where k is an integer, but we'll take x to be π/3 since all other angles are going to be the same when plugging the value from that question there. The value here in that question there can be converted as x=(cis(π/3))^7777. This equals to cos(7777π/3)+isin(7777π/3). In polar form, r=√((cos(7777π/3))^2+(sin(7777π/3))^2)=1 and θ=arctan(sin(7777π/3)/cos(7777π/3))=arctan(tan(7777π/3))=π/3. This would be x=e^((π/3)i). Raise both sides by 3, which is x^3=e^(πi)=-1. Therefore x^3=-1, or x=-1.
@dan-florinchereches48922 жыл бұрын
Why would you consider 5Pi/3? Since both terms of x are positive we can only accept first Quadrant angles. Sine of 5pi/3 is going to be negative, but valid as it is the conjugate of the given value for this specific problem. I would just verify the modulus of the number, the angle being 1/3pi and then divide 7777 by 6 to see how many Complete revolutions we got around the unity circle
@justabunga12 жыл бұрын
@@dan-florinchereches4892 there is a typo I made so far.
@nerdherd2812 жыл бұрын
Great question again.
@PreMath2 жыл бұрын
Thanks for your feedback! Cheers! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@SurajSingh-nx7yj2 жыл бұрын
Thanks Guruji 🙏
@PreMath2 жыл бұрын
So nice of you, Suraj dear Keep shining like Suraj! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@mathsplus012 жыл бұрын
Thanks Sir
@TurquoizeGoldscraper2 жыл бұрын
I looked at x and realized it was e^(i * 1/3 * Pi), which leads to x^6 = e^(i * 2 * Pi) = 1. x ^ 7777 = x ^ (6 * 1296) * x ^ 1 = 1 ^ 1296 * x = x.
@PreMath2 жыл бұрын
Thanks for sharing! Cheers! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@janekfortepianek2 жыл бұрын
Great video as always
@PreMath2 жыл бұрын
Glad you enjoyed Thanks for your feedback! Cheers! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@mathbynisharsir55862 жыл бұрын
Amazing sir.
@neowong72242 жыл бұрын
What about Euler's formula? e^ix = cosx+isinx. x=3/pi cos(7777*3/pi)=cos(2*pi*1296+3/pi)=cos(3/pi), sine the same
@명진-x4r2 жыл бұрын
awesome! thank you👍😄
@seegeeaye Жыл бұрын
A shortcut by the De Moivre Theorem: (cos(pai/3) + sin(pai/3))^7777 = cos(2592pai + pai/3) + sin(2592pai + pai/3) ) = 1/2 + ( i/2 ) sqrt 3
@beeruawana66622 жыл бұрын
Very nice 🙏🙏
@PreMath2 жыл бұрын
Thank you! Cheers! You are awesome, Beeru. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@floxie89142 жыл бұрын
How do I learn to do stuff like this myself. Im quite amazed.
@Math-6252 жыл бұрын
Sir plz giving this type of question
@msafasharhan2 жыл бұрын
Hello sir how to solve thissqr
@69420guyhaha2 жыл бұрын
heres the problem i remember theres a thing called bodmas in math (i remember idk if its wrong) its short of base, order, division, multification (correct my spelling aaaaaaaaaaaaaaaaaa), addition, and subtraction now heres the problem, since it should be addition then subtraction, then it should be (a-b)^2 = (a^2-2ab)+b^2, not a^2-2ab+(b^2)
@pranavamali052 жыл бұрын
thnku
@PreMath2 жыл бұрын
You are very welcome! Thank you! Cheers! You are awesome, Pranav. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@anoopshivhare72232 жыл бұрын
Nice sir
@PreMath2 жыл бұрын
So nice of you, Anoop Thanks for your feedback! Cheers! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀 Stay blessed 😀
@parthmadaan33992 жыл бұрын
Simple if u apply omega cube root of unity it will be solved in 2 steps
@sivaprasadrapeti84662 жыл бұрын
👏👏👏👏👌👍
@mva2862 жыл бұрын
It can easily shown that x^3 = -1. This leaadas to x^7776 = (x^3)^2592 = (-1)2592 = 1. Thus: x^7777 = x * x^7776 = x * 1 = x = (1 + i * sqrt 3)/2
@Sspatel2352 жыл бұрын
Simple,Use De Moivre's formula.
@matt-fitzpatrick2 жыл бұрын
I saw the huge exponent, and guessed the powers of x would be cyclical. (Good guess!) So I squared x, just to explore what happens. Then squared it again, and saw x^4 = -x. (Oops, I shouldn't have skipped x^3!) But I didn't think to reduce x^4 = -x to x^3 = -1. So I eventually got to x^7777 = x, but it was ugly. Your solutions were much nicer!
@anirudhya1102 жыл бұрын
In our engineering entrance examination, you will get such problems to be resolved by less than 30secs.
@AryanY_jee4 ай бұрын
You can solve it easily by de moiver theorem
@alcibiadesmarcialneto9222 жыл бұрын
X^3=-1 => x=-1 is that wrong? If not x^7777=-1.
@natmirmira83292 жыл бұрын
X=exp(i*pi/3) will yield the answer in 2 steps!
@Denish_Uprety2 жыл бұрын
easy
@PreMath2 жыл бұрын
Great!
@jasimmathsandphysics2 жыл бұрын
I converted to polar form
@PreMath2 жыл бұрын
Great, Jasim
@xroonos31512 жыл бұрын
Это очень просто. -1/2+i*sqrt(3)/2. Модуль этого числа равен 1, так что при перемножении этот вектор крутится по кругу с шагом в 60 градусов. 7777=1296*6(6*60=360)+1. Так что будет всего лишь 1 перемножение этого числа на само себя или данное число в квадрате. (1/2+i*sqrt(3)/2)^(6*N)=(1/2+i*sqrt(3)/2).