Prepare and transform data in the lakehouse

  Рет қаралды 10

Venkateswarlu talapaneni

Venkateswarlu talapaneni

Күн бұрын

Here's what we covered:
✅ Data Import & Table Creation
Converted Parquet files into tables in a serverless environment.
Created fact and dimension tables using optimized writers for efficient storage and querying.
✅ Aggregate Tables
Showcased two methods to build aggregate tables:
1️⃣ PySpark: Ideal for flexibility and scalability.
2️⃣ Spark SQL: Cleaner, simpler, and familiar for SQL users.
✅ Key Highlights
Leveraged Lakehouse notebooks for seamless integration.
Utilized advanced features like partitioning, columnar storage (V-Order), and optimized writing for faster reads.
💡 Takeaway: Spark SQL offers a clean and intuitive approach for creating aggregate tables, making it my preferred choice

Пікірлер
How To Write SQL Server Queries Correctly: Subqueries
23:20
Erik Darling (Erik Darling Data)
Рет қаралды 1,2 М.
Database Sharding and Partitioning
23:53
Arpit Bhayani
Рет қаралды 104 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
"Simple Made Easy" - Rich Hickey (2011)
1:01:39
Strange Loop Conference
Рет қаралды 104 М.
Intro to Databricks Lakehouse Platform Architecture and Security
28:47
Delta Live Tables A to Z: Best Practices for Modern Data Pipelines
1:27:52
Day in the Life of a Japanese Game Programmer
13:47
Paolo fromTOKYO
Рет қаралды 16 МЛН
OAuth 2.0 and OpenID Connect (in plain English)
1:02:17
OktaDev
Рет қаралды 1,8 МЛН
Python laid waste to my C++!
17:18
Sheafification of G
Рет қаралды 148 М.
Iceberg Tables in Snowflake
12:53
Venkateswarlu talapaneni
Рет қаралды 656
Про Kafka (основы)
49:23
Владимир Богдановский
Рет қаралды 420 М.
3152. Special Array II
19:59
bab lobko (Short and straight to the point)
Рет қаралды 27
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН