Primes Dividing Each Other

  Рет қаралды 6,320

letsthinkcritically

letsthinkcritically

Күн бұрын

Пікірлер: 9
@pedrojose392
@pedrojose392 3 жыл бұрын
Good evening! pq because if p=q then p|1, contradiction as p is prime. By symmetry WLOG p>q If q is even then q=2 ==> p | 9 and so p=3, checking q^2=4 | 28= p^3+1 and for now we have two solutions (2,3) and (3,2) If both are odd p^2| (q+1) (q^2-q+1) As p does not divide q+1 because p > q+1 then p^2 | q^2-q +1 but p>q ==>p^2>q^2 > q^2-q+1 as q >1 so we dont have solutions for both odd. Then (2,3) and (3,2) are the only solutions.
@venkateshsaki5980
@venkateshsaki5980 3 жыл бұрын
Very nicely explained
@particleonazock2246
@particleonazock2246 3 жыл бұрын
Thanks for the great underrated vid
@mcwulf25
@mcwulf25 3 жыл бұрын
Good problem. I got the answer but couldn't prove it was the only answer.
@prithujsarkar2010
@prithujsarkar2010 3 жыл бұрын
Was this a reupload?
@timetraveller2818
@timetraveller2818 3 жыл бұрын
yea it was
@letsthinkcritically
@letsthinkcritically 3 жыл бұрын
Yes, as mentioned in the remark.
@rupeshkapoor5380
@rupeshkapoor5380 2 жыл бұрын
I think all that Euclidean algorithm business was unnecessary. For p to divide q+1 where p > q, p must be equal to q+1. The only two consecutive primes are 2 and 3.
@lreactor
@lreactor 2 жыл бұрын
This looks like overkill... p=q=2 doesn't work, which means p (the larger one, which can't be 2) is odd. But then q^3+1 is odd, so q is even. So q=2. From the LHS eq, p^2 | 9; so p=3 is the only solution. That works for the RHS equation as well, so we're done.
A Nice and Neat Trigonometry Problem | AIME 1996 Problem 10
5:59
letsthinkcritically
Рет қаралды 6 М.
Symmetric Problem on Divisibility of Primes by @letsthinkcritically
9:41
letsthinkcritically
Рет қаралды 10 М.
小丑揭穿坏人的阴谋 #小丑 #天使 #shorts
00:35
好人小丑
Рет қаралды 48 МЛН
amazing#devil #lilith #funny #shorts
00:15
Devil Lilith
Рет қаралды 18 МЛН
Ice Cream or Surprise Trip Around the World?
00:31
Hungry FAM
Рет қаралды 9 МЛН
Equation on Factorials
10:38
letsthinkcritically
Рет қаралды 10 М.
A Tricky Divisibility Problem
8:07
letsthinkcritically
Рет қаралды 9 М.
A Symmetric Problem on Divisibility
10:26
letsthinkcritically
Рет қаралды 8 М.
Two Solutions to International Mathematical Olympiad 1986 Problem 1
15:41
letsthinkcritically
Рет қаралды 16 М.
Harvard University interview| Surd simplification|Calculator is not allowed
11:16
JJ ONLINE MATHS CLASS
Рет қаралды 1,4 М.
Solving This Equation With One Simple Trick
9:00
letsthinkcritically
Рет қаралды 9 М.
A beautiful inequality | International Mathematical Olympiad 2012 Problem 2
11:42
What is the Units Digit?
9:55
letsthinkcritically
Рет қаралды 10 М.
Nice Math Olympiad Question. Can you solve this? |Two Methods
4:51
小丑揭穿坏人的阴谋 #小丑 #天使 #shorts
00:35
好人小丑
Рет қаралды 48 МЛН