make sure you run following before installing: library(devtools)
@raisulalam60514 жыл бұрын
Thank you
@bkrai4 жыл бұрын
Welcome!
@earlymorningcodes61004 жыл бұрын
scatter Plat and Correlation- 2:04
@bkrai4 жыл бұрын
Thx
@souvikmukherjee79772 жыл бұрын
sir, please make a session on factor analysis with prediction
@bkrai2 жыл бұрын
Thanks for the suggestion!
@katherinechau55943 жыл бұрын
your videos are great :)
@bkrai3 жыл бұрын
Thank you!
@earlymorningcodes61004 жыл бұрын
Orthogonality of principal component- 10:17
@bkrai4 жыл бұрын
Thx
@janardhankadari32862 жыл бұрын
Interesting
@bkrai2 жыл бұрын
thanks!
@manpreetkaur77162 жыл бұрын
Add a video on non negative matrix factorization like intNMF
@bkrai2 жыл бұрын
Thanks, I've added it to my list of future videos.
@shawnmckenzie86994 жыл бұрын
To install ggbiplot, the code is now (17, Jan, 2020): library(devtools) install_github("vqv/ggbiplot") source: github.com/vqv/ggbiplot Excellent video and well explained these concepts. Thanks.
@bkrai4 жыл бұрын
Thanks for the update!
@deepikachandrasekaran35543 жыл бұрын
Very useful video sir. Could you explain me what is the need to partition the data into training and testing data?
@bkrai3 жыл бұрын
You may review this: kzbin.info/www/bejne/l4SUgGt7nqx_msk
@deepikachandrasekaran35543 жыл бұрын
@@bkrai thank you sir.
@ramram2utube Жыл бұрын
I revisited your video for interpretation of biplots in PCA. Many thanks.
@bkrai Жыл бұрын
You are welcome!
@nyatonkitnya42673 жыл бұрын
one really good video i have found. After watching few of your video now your videos are becoming a "turn to" when require. thanks
@bkrai3 жыл бұрын
Glad to hear that!
@earlymorningcodes61004 жыл бұрын
partition of data 1:16
@bkrai4 жыл бұрын
Thx
@sonalichakrabarty16182 жыл бұрын
Can you please show back propagation algorithm in r
@bkrai2 жыл бұрын
Refer to this: kzbin.info/www/bejne/Y4fWaomXmpd-f5I
@abiani0074 жыл бұрын
Can you upload a video describing independent component analysis in R
@bkrai4 жыл бұрын
I've added it to my list.
@earlymorningcodes61004 жыл бұрын
Bi Plot 11:38
@bkrai4 жыл бұрын
Thx
@bucklasek12 жыл бұрын
Thanks for the video! It helped me a lot doing the forecasting for future values using PCA.
@bkrai2 жыл бұрын
Very welcome!
@eldrigeampong85734 жыл бұрын
Thank you so much Dr. Rai. Detailed teaching
@bkrai4 жыл бұрын
Thanks for comments!
@WahranRai3 жыл бұрын
19:12 It is only for purpose to show another way to get the principal component related to training because : identical(pc$x, predict(pc,training)) gives TRUE meaning that pc$x is same as predict(pc,training).
@bkrai3 жыл бұрын
That's correct!
@nyadav378 Жыл бұрын
Very informative and nice presentation sir, sir can we estimate PCA for factor (for eg species) with unequal no. of observation. And we want to see the correlations in terms of each species viz for setosa or other two, how to do it? Please explain...Thank You
@srujananeelam65475 жыл бұрын
Fantastic session.Perfectly understood Biplot
@bkrai5 жыл бұрын
Thanks for comments!
@donne4real4 жыл бұрын
Wonderful job explaining the material.
@bkrai4 жыл бұрын
Thanks for your comments and finding it useful!
@Dejia_Space4 жыл бұрын
Thank you!!Best explanation on Biplot on KZbin .
@bkrai4 жыл бұрын
Glad it was helpful!
@ramram2utube2 жыл бұрын
Thanks a lot Sir for your nice presentation. You saved my time. Earlier I used your R codes on Kohonen NN and now for PCA for my training lectures. Your explanation is so lucid. I appreciate your noble service of sharing knowledge
@bkrai2 жыл бұрын
You are most welcome!
@affyy043 жыл бұрын
Thank you for this amazing video. Better than my university lectures
@bkrai3 жыл бұрын
Thanks for comments!
@jacklu16112 жыл бұрын
The Bio-plot was explained very clearly, thank you Dr. Rai!
@bkrai2 жыл бұрын
You are welcome!
@koparka1122 жыл бұрын
Thank you for the material. It is very clear and actually very relevant to my current work. As I understand, the conversion of the data comprises addition products of notmalized predictors and loadings. Maybe you would have time to post a PLS regression video, please? The intriguing part is the explanation of the model itself
@deepthibhadran41814 жыл бұрын
sir can u please make one video on k means clustering and classification and regression tree analysis
@bkrai4 жыл бұрын
See this link: kzbin.info/www/bejne/a5anooWvqMacmdE
@deepthibhadran41814 жыл бұрын
@@bkrai thank you sir
@bkrai4 жыл бұрын
You are welcome!
@deepthibhadran41814 жыл бұрын
@@bkrai Sir do you know about WRF model
@bkrai4 жыл бұрын
yes
@dioagusnofrizal97734 жыл бұрын
Thanks sir, why in this video use linear regression? Can i use k means to clustering from pc1 and pc2?
@bkrai4 жыл бұрын
Which line are you referring to?
@dioagusnofrizal97734 жыл бұрын
Sorry, i mean logistic regression in line 59
@earlymorningcodes61004 жыл бұрын
5:01 Principal component Analysis
@bkrai4 жыл бұрын
Thx
@abhishek8943 жыл бұрын
Thank you for this nice video Dr. Rai. I have a doubt. Why the predict function was used multiple times. After the prcomp function, all the data of Principle components were available in: pc$x. Why do we have to do: trg
@bkrai3 жыл бұрын
In R you can get same thing in multiple ways. This is just for illustration.
@abhishek8943 жыл бұрын
@@bkrai Thank you Sir. That makes it clear.
@bkrai3 жыл бұрын
@@abhishek894 You are welcome!
@aks1008 Жыл бұрын
Sir can I use boruta function instead of pca in r..
@bkrai Жыл бұрын
Yes certainly. Here is the link: kzbin.info/www/bejne/jHalkqtojLKVe6M
@aks1008 Жыл бұрын
@@bkrai sir what do you like between r and python..i find r code more easy to understand and write..
@bkrai Жыл бұрын
In universities, business students usually use R and computer science students mostly use Python. If you are mainly looking to apply various machine learning and statistical methodologies, R is perfect.
@LlamaFina6 жыл бұрын
Great video! Thanks for sharing your knowledge.
@bkrai6 жыл бұрын
Thanks for comments!
@jinnythomas98154 жыл бұрын
Thanks for the video Please publish video on Exploratory Factor Analysis,Confirmatory Factor Analysis application in a model Also please explain the difference from PCA
@bkrai4 жыл бұрын
Thanks for the suggestion, I've added this to my list.
@prithvivasireddy55645 жыл бұрын
Awesome video sir...kudos... :) 1 doubt though .... 20:48 - why are we using 2 components only? How do we know how many principal components to use?(species ~ PC1 + PC2)
@bkrai5 жыл бұрын
2 PCs capture more than 95% of the variability in the data. Other 2 only add about 5%. So you can choose to have PCs that capture over 80% or 90% of the variability.
@siddharthabingi7 жыл бұрын
Great lecture. Thanks.
@bkrai5 жыл бұрын
Thanks!
@inesceciliacardonadevoz50724 жыл бұрын
Thanks for this video sir, very good class but I can´t get it. because Error ... could not find function "ggbiplot". Excuse me, which is your R version ?
Nice video and very helpful, I have challenges while installing the ggbiplot and mnet packages (am using R version 3.6.3) please any advice on how to over come such challenge?
@mukhtaradamuabubakar3703 жыл бұрын
OK for the nnet package it was successfully installed. but still struggling with the ggbiplot (despite using your codes). thanks
@NIKHILESHMNAIK5 жыл бұрын
You are too good sir. An absolute treat for ML enthusiasts.
@bkrai5 жыл бұрын
Thanks for your comments!
@soumyanayak4455 жыл бұрын
Sir why have you predicted the training and test data with respect to PC? can use trg data for making neural model and test using tst data set? and find correlation b/w act and predicted values?
@bkrai5 жыл бұрын
When there are many variables, chances of having multicollinearity problem increases. And PCA helps to solve that problem. And yes, you can use neural network model.
@soumyanayak4455 жыл бұрын
@@bkrai sir can you please explain me the significance of the lines under the heading: prediction with principle components.As I am unable to understand why we are predicting twice on test data set. Please explain sir
@bkrai4 жыл бұрын
To avoid over-fitting where you get very good result from training data but not so from testing.
@johnstevenson64582 жыл бұрын
Great video. Do you have a suggested package for running binary logistic regression? From a brief scan of nnet it appears to only have arguments for multinomial response variables. Thank you.
@bkrai2 жыл бұрын
You can refer to this: kzbin.info/www/bejne/d4fbaIqZZqiEbbs
@johnstevenson64582 жыл бұрын
@@bkrai sorry I was unclear in my message. I was hoping for a suggested package to run a binary logistic regression using PCA components as predictors - similar to what you have done here with multinomial. Any suggestions are welcome.
@bkrai2 жыл бұрын
Yes, you can use the PCA components as predictors and run binary logistic regression as shown in the link that I sent earlier.
@MinhasA6 жыл бұрын
thank you for the amazing video!
@bkrai6 жыл бұрын
Thanks for comments!
@golumworks2 жыл бұрын
If I just use addEllipses =TRUE, what determines the size of those ellipses? Also, if I specify ellipse.type = “confidence”, what confidence level is used to generate the ellipses? I used factoextra if that helps.
@ketanverma78392 жыл бұрын
is there any other alternative package for ggbiplot ?
@bkrai2 жыл бұрын
Try this for biplot ( I just now ran this in RStudio cloud, and it worked fine): library(devtools) install_github("fawda123/ggord") library(ggord)
@adityapatnaik70786 жыл бұрын
too good!! plz make more such videos...plz!
@bkrai6 жыл бұрын
Thanks for comments! You may find this useful too: kzbin.info/aero/PL34t5iLfZddu8M0jd7pjSVUjvjBOBdYZ1
@azzeddinereghais74943 жыл бұрын
Good evening If you want to show the first dimension (Dim1) and the third dimension (Dim3) What to do or if you can provide the code for that Thanks
@Rutvi_patel_11117 жыл бұрын
Fabulous work in PCA ! Keep it up
@bkrai7 жыл бұрын
Thanks for the feedback!
@maf44213 жыл бұрын
Thank you Dr. Bharatendra Rai for explaining PCA in detail. Can you please explain how to find weights of a variable by PCA for making a composite index? Is it rotation values that are for PC1, PC2, etc.? For example, if I have (I=w1*X+w2*Y+w3*Z) then how to find w1, w2, w3 by PCA.
@bkrai3 жыл бұрын
For calculations you can refer to any textbook.
@statistician28562 жыл бұрын
sir my data is showing [ reached getOption("max.print") -- omitted 10 rows ]. the last 10 rows are omitted, how to fix this, please
@bkrai2 жыл бұрын
That's just how much gets printed. But all data still remains intact.
@ainli41254662 жыл бұрын
Thank you for sharing, I get an error "Error in plot_label(p = p, data = plot.data, label = label, label.label = label.label, : Unsupported class: prcomp"", when I try to run the ggbiplot. Would you please advise how to fix it?
@siddharthadas867 жыл бұрын
Seriously awesome explanations! Thank you again.
@bkrai5 жыл бұрын
Thanks!
@GeFaaaA4 жыл бұрын
Hello very nice video!!! i have a question. Do you how i choose how many PC i have to use and which ones ???
@bkrai4 жыл бұрын
When you have many PCs, you can select first few that capture almost all variability contained in data.
@GeFaaaA4 жыл бұрын
@@bkrai thank you for your response! So I have to test every possible model , right? Do you know if I can use something like a criterion ?
@bkrai4 жыл бұрын
It is good to capture over 80% of the variability.
@anuraratnasiri55164 жыл бұрын
Thank you so... much!
@bkrai4 жыл бұрын
Thanks for comments!
@alessandrorosati969 Жыл бұрын
can a dataset consisting of the principal components and the target variable be used to perform machine learning techniques?
@bkrai Жыл бұрын
Yes, this video shows an example of doing it.
@ziauddinkhan41895 жыл бұрын
Why u partition the data into 80 and 20 % please answer
@bkrai5 жыл бұрын
It can be any other ratio too. Eg., 60:40, 70:30, 75:25 or 90:10.
@ziauddinkhan41895 жыл бұрын
@@bkrai my question is that what's the reason behind splitting the data into parts in testing and training either its 8o to 20 or 60 to 40. Thanks
@bkrai4 жыл бұрын
To avoid over-fitting where you get very good result from training data but not so from testing.
@jonimatix7 жыл бұрын
I really like your explanations in your videos. Keep them coming! Thanks
@bkrai7 жыл бұрын
Thanks for the feedback!
@ariannaschmid38052 жыл бұрын
Why do you predict before you build the model? Shouldn't it be the other way around?
@bkrai2 жыл бұрын
If you are referring to 18:34 time point, note that the predict function is using principal component 'model'.
@ariannaschmid38052 жыл бұрын
@@bkrai What is it that you are trying to predict there? Compared to what you would predict using the regression model?
@bkrai2 жыл бұрын
Using predict function we are generating principal components. Later, we are using these principal components for developing a classification model. This is a small dataset just to illustrate the process. And will be useful for high dimensional data where one deals with 1000s of variables.
@hr_foods4 жыл бұрын
Thanks for good video. Sir I am using R 3.6.1 version unable to install devtools and ggbiplot also. If devtools install then show that usethis package is missing please solve my issue.
@bkrai4 жыл бұрын
I would suggest upgrade R. Currently it is around 4.
@hr_foods4 жыл бұрын
@@bkrai I upgrade it but still this problem happen
@@bkrai I used these codes but not install error occured
@bkrai4 жыл бұрын
After intalling make sure to run library.
@dejunli64172 жыл бұрын
Hi, I want to know from where can I get the iris example data ? thank you!
@bkrai2 жыл бұрын
It's inbuilt in R itself. You can access it by running first 3 lines shown in the video.
@saurabhkhodake7 жыл бұрын
This video is worth its weight in gold
@alindonosi43 жыл бұрын
Where can I find the raw data of this project?
@bkrai3 жыл бұрын
Data used here is available within R.
@philipabraham56007 жыл бұрын
This is the best PCA explanation I have seen anywhere so far. Thank you for sharing your knowledge.
@bkrai7 жыл бұрын
Thanks for the feedback!
@kashgarinn6 жыл бұрын
Great video, thanks for uploading.
@bkrai6 жыл бұрын
Thanks for comments!
@sathishrs37 жыл бұрын
Hi Sir, your materials are simple and wonderful. Pls do one video for xgboost. that would be great.
@bkrai7 жыл бұрын
Thanks for the suggestion!
@sathishrs37 жыл бұрын
Bharatendra Rai Thanks a lot sir.
@flamboyantperson59367 жыл бұрын
I agree with sathish ravi, Sir please make a video on xgboost. You are one stop solution for every problem and I will remember you all my life.
@ramp20117 жыл бұрын
Awesome video. Thank you. As time permits can you do a video on use of caret package? thank you
@bkrai5 жыл бұрын
Saw this today. Thanks for comments!
@highway2chill3 жыл бұрын
thank you a lot for this support sir. If you could provide further guidance it would be very helpful. I am trying to build a models for metastasis prediction using single cell gene expression levels. kindly let me know if it would be possible for you. thanks again
@bkrai3 жыл бұрын
You may find this useful: kzbin.info/www/bejne/i5rPY3qQlp2amMk
@jayashriraghunath32104 жыл бұрын
Awesome explanation sir...👍👍can you make a video for independent component analysis using r in the same way sir?
@bkrai4 жыл бұрын
Thanks, I've have added it to my list.
@andreafiore83734 жыл бұрын
Thank you, this video will be really helpful to complete my thesis :)
@bkrai4 жыл бұрын
Good luck!
@galk325 жыл бұрын
One of the best PCA videos i ever seen, Thank you Mr. Rai.
@bkrai5 жыл бұрын
Thanks for comments!
@theeoddname7 жыл бұрын
Great Video! Excellent walk though on PCA and how it can be useful for actual classifications. Thanks for the upload.
@bkrai7 жыл бұрын
+theeoddname thanks for the feedback!
@harishnagpal216 жыл бұрын
Hi Bharatendra, nice video. I have got couple queries. If there are large no of numeric variables and through PCA we find that they are highly correlated then before going for model building 1) Do we need to remove highly correlated variables ! 2) which one to remove ! Thanks
@bkrai6 жыл бұрын
You don't need to remove if you are using the components for developing a prediction model. This video provides a similar example.
@harishnagpal216 жыл бұрын
thanks
@desert002005 жыл бұрын
Principal components are orthogonal to each other, saying differently they are uncorrelated and can be used as is in model building.
@bkrai4 жыл бұрын
Thanks!
@jonm72724 жыл бұрын
Thank you for this extremely helpful, and easily understood tutorial, particularly the clear interpretation of the Bi-Plot. Much appreciated
@bkrai4 жыл бұрын
You're very welcome!
@sidraghayas85835 жыл бұрын
Can you please help with combined pca and ann model?
@bkrai5 жыл бұрын
I'm adding to the list of future videos.
@PrimoSchnevi4 жыл бұрын
Hello. I dont know anything about Principal Component Analysis in R: Example with Predictive Model & Biplot Interpretation and i will never need to since thats not in my line of work. I Appreciate your Intromusic though. You are a true champ Bharatendra and enrich this world with your presence. Also that intro music fucking slaps.
@bkrai4 жыл бұрын
Thanks for comments!
@upskillwithchetan4 жыл бұрын
Really really great explanation sir, Thank you so much for making it very simple
@bkrai4 жыл бұрын
Thanks for comments!
@abhiagni2427 жыл бұрын
thanks for the video sir... helped a lot :)
@bkrai7 жыл бұрын
Thanks for the feedback!
@naeem30725 жыл бұрын
> install_github("ggbiplot","vqv") Error in parse_repo_spec(repo) : Invalid git repo specification: 'ggbiplot' what should i do sir
@bkrai5 жыл бұрын
Check if you ran library(devtools)
@flamboyantperson59367 жыл бұрын
This is great. I was looking for PCA and you have done it. Many many thanks to you sir.
@joujoumilor28985 жыл бұрын
As usual your videos are the best explained , Sir please I have a question actually my data contains both numeric and categorical variables, so what is the best method to reduce demension and what is the name of the pckage because I'm new in R .
@dhavalpatel18434 жыл бұрын
You can binaries your categorical variables. Try to google and learn about One-of-k coding. That way you end up with only numerical data.
@ramp20117 жыл бұрын
Another great video. Thank you.. If your data has number of categorical columns, PCA will miss out the dependence of the target variable on these columns. Correct? In such cases what other technique can one use? Thx
@bkrai7 жыл бұрын
PCA doesn't include target variable. At the time of developing a predictive model where we use a few principal components, we can include categorical variables. So, we don't miss out on the usefulness of any categorical variable that was excluded from PCA.
@vishnukowndinya7 жыл бұрын
hi sir, dose it mean that, if i have x1 x2 c3 x4 (c3 is a categorical) . At 1st i have to use all the numeric (x1 2 4) variables to build pca, then adding the cat var c3 my data changes as (pc1,pc2, c3) ??? or in the begining itself i have to convert the categorical c3 into (1, 0) and then include all my input vars to form a pcs????
@modelmichael19727 жыл бұрын
Awesome video. Every R enthusiast needs to keep an eye on your channel. Thank you and keep up with great work!
@bkrai7 жыл бұрын
+Model Michael thanks👍
@padhanewalaullu7 жыл бұрын
Sir, Can we get code file ?
@mukeshchoudhary28423 жыл бұрын
Great video.. What if we want to include factor-like "Control and Heat" for genotypes? Please suggest
@bkrai3 жыл бұрын
It should work fine.
@safeeqahmed33066 жыл бұрын
Great video. I have one doubt. What does the stddev attribute of PC contain? Standard deviations of the variables are already in scale..so what does stddev represent? Thanks a lot
@bkrai6 жыл бұрын
At what point in time do you see this?
@safeeqahmed33066 жыл бұрын
Bharatendra Rai sorry it’s sdev attribute of pc and in 9:48 while showing the summary of pc, I would like to know what the standard deviation row denote..thanks a lot
@bkrai6 жыл бұрын
It is standard deviation related to principal components. It helps to estimate what percentage of variability is captured by each principal component.
@safeeqahmed33066 жыл бұрын
Bharatendra Rai thanks a lot. I understand this now
@shapeletter4 жыл бұрын
What is the difference between using "scale." and "scale"? Is it in order to use z-score vs. min-max?
@bkrai4 жыл бұрын
Here the code requires scale. to be used. It uses z-score.
@shapeletter4 жыл бұрын
@@bkrai Okay, thanks! I will try it out! :)
@bkrai4 жыл бұрын
Welcome!
@mohammadj.shamim93427 жыл бұрын
Dear Respected Sir, I wanted to install ggbiplot using the command you provided with us. but it gives me another message. The message is (Installation failed: SSL certificate problem: self signed certificate in certificate chain Warning message: Username parameter is deprecated. Please use vqv/ggbiplot) I used vqv/ggbiplot as well, but no good results. please guide me what shall I do?
@bkrai7 жыл бұрын
Not sure what went wrong. May be some typo or something else. Probably you can try running commands using my R file.
@safezonesharing9146 жыл бұрын
Thank you for your VDO. My R version is 3.5.1 and it cannot allow ggbiplot. Do you have any package instead of ggbiplot ?
@bkrai6 жыл бұрын
Try installing it by running this line: install_github("ggbiplot", "vqv")
@safezonesharing9146 жыл бұрын
@@bkrai Thank you for your kindly replying When I ran it, it would shown like this. Error in install_github("ggbiplot", "vqv") : could not find function "install_github"
@ashishsangwan59256 жыл бұрын
@@safezonesharing914 I'm also getting the same error
@ashishsangwan59256 жыл бұрын
@@safezonesharing914 try below command. It worked for me library(devtools) install_github("vqv/ggbiplot")
@alexandrec.29395 жыл бұрын
@@ashishsangwan5925 Arf, for few seconds I believed you were my saver ^^. But nope, your alternative didn't work as well
@sebvangeli7 жыл бұрын
Great work! Thank you
@parametersofstatistics21454 жыл бұрын
Thanks sir .....can u please tell me how start learning on R from beginning?
@bkrai4 жыл бұрын
You can start with this playlist: kzbin.info/aero/PL34t5iLfZddv8tJkZboegN6tmyh2-zr_T
@ConeliusC337 жыл бұрын
Your videos have been constant companions during the last months of my master thesis. It seemed as if every time I had to switch to another analysis technique you were allready waiting here. So thank you a lot for your guidance and clear explanations! The only thing I would appreciate would be if you could provide the basic R scripts. Even though the copying process might help with understanding each command due to step by step application, to type text of a tiny youtube screen shown in one half of my monitor to r studio in the other half is troublesome. Thanks!
@bkrai7 жыл бұрын
Thanks for the feedback!
@anigov6 жыл бұрын
Dear Sir..thanks for a wonderful video. I have some questions. 1) At 20:18, why did u choose to reorder by setosa? 2)Why did you choose to use data as trg and not training to build mymodel given that trg has predictions from training 3) Can PCA be used to choose k in kmeans. If so, how to go about it? Thanks again. Regards
@scholars.home9994 жыл бұрын
Sir, can you please suggest how I can perform PCA on my Panel Data? -Regards
@vishalaaa14 жыл бұрын
Hi, Most of the people who are seeing the videos are new to data science. Please explain the parameters of each function. Just typing wont help them. The more detail and the more slow, the better the no of views. I myself was a trainer. The difference between 1000 views and a million views is the clarity and completeness
@bkrai4 жыл бұрын
Thanks for the feedback!
@murilocintra1806 жыл бұрын
Excellent demonstration of PCA, really helpful. I just don't understand why in pc object, you use only training data instead of the entire data.
@bkrai6 жыл бұрын
We only use training data so that we can later use test data to assess prediction model.
@eniolaa776 жыл бұрын
how do i get the file
@bkrai6 жыл бұрын
here is the link: drive.google.com/open?id=0B5W8CO0Gb2GGYTQ2SWxkc2FCVGs
@mamadououattara2102 жыл бұрын
Hi Dr, How to I use PCA to generate a score based on several variables? Regards