Principal Component Analysis (PCA) | Dimensionality Reduction Techniques (2/5)

  Рет қаралды 6,926

DeepFindr

DeepFindr

Күн бұрын

Пікірлер: 16
@English-bh1ng
@English-bh1ng 2 ай бұрын
Well-organized video and description, abundant references. I love this series. Cheer up!
@yashdevarshi2583
@yashdevarshi2583 10 ай бұрын
Amazing explanation! Wish my uni professors were like you
@anas.aldadi
@anas.aldadi 11 ай бұрын
what a nice a cool channel to discover, i stumpled upon your channel searching for mathematical explaination for diffusion theory and model!
@DeepFindr
@DeepFindr 11 ай бұрын
Thanks! Appreciated :)
@MegaBoss1980
@MegaBoss1980 11 ай бұрын
In your future series, will you also cover PCA for categorical variables? Also, can we apply PCA on embeddings of categorical variables?
@DeepFindr
@DeepFindr 11 ай бұрын
Hi :) for this series that's the only thing about PCA. Next videos will be about other techniques. It's mainly intended to get a good overview for each method. PCA is designed for continuous variables - all of the projections don't make too much sense for categorical data. That's mainly because distances are not properly defined. Of course it's possible to apply it anyways for example on one hot encoded variables, but it might not be the best choice. You might want to look into Multiple Correspondence Analysis (MCA), which is designed for categorical variables.
@TheZapalsky
@TheZapalsky 11 ай бұрын
great content!
@shaz-z506
@shaz-z506 11 ай бұрын
Nice one 😃, could you please extend this and explain kernel PCA in the similar manner, I don't think so there are many videos kernel PCA
@DeepFindr
@DeepFindr 11 ай бұрын
Will put it on the list but can't promise :D
@yeshiwangmo5920
@yeshiwangmo5920 6 ай бұрын
Do you have ppt on this
@FabioDBB
@FabioDBB 8 ай бұрын
Amazing explanation dude Rome is way bigger than NYC btw
@DeepFindr
@DeepFindr 8 ай бұрын
Thanks! Yeah area-wise it is but not population-wise, right?
@YouKnowWhoIAm118
@YouKnowWhoIAm118 11 ай бұрын
Hi, your explainable AI playlist could be updated ;) no offense bro, just as a suggestion
@DeepFindr
@DeepFindr 11 ай бұрын
Hehe with which method? :)
@lorenzoneri-co5hj
@lorenzoneri-co5hj 4 ай бұрын
(rome is bigger than nyc)
@DeepFindr
@DeepFindr 4 ай бұрын
When it comes to area probably yes :P but not citizens wise
Car Bubble vs Lamborghini
00:33
Stokes Twins
Рет қаралды 42 МЛН
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 4,2 МЛН
Trapped by the Machine, Saved by Kind Strangers! #shorts
00:21
Fabiosa Best Lifehacks
Рет қаралды 39 МЛН
Which team will win? Team Joy or Team Gumball?! 🤔
00:29
BigSchool
Рет қаралды 15 МЛН
Principal Component Analysis (PCA)
26:34
Serrano.Academy
Рет қаралды 414 М.
Principal Component Analysis (PCA): With Practical Example in Minitab
9:36
LEARN & APPLY : Lean and Six Sigma
Рет қаралды 92 М.
Principal Component Analysis (PCA)
13:46
Steve Brunton
Рет қаралды 396 М.
Principal component regression (PCR) - explained
14:48
TileStats
Рет қаралды 26 М.
Principal Component Analysis (The Math) : Data Science Concepts
13:59
StatQuest: PCA in R
8:57
StatQuest with Josh Starmer
Рет қаралды 287 М.
PCA : the math - step-by-step with a simple example
20:22
TileStats
Рет қаралды 113 М.
Car Bubble vs Lamborghini
00:33
Stokes Twins
Рет қаралды 42 МЛН