Dude, don't stop making videos like this! You are very talented teacher! Your explanations are extremely useful! Thanks a lot!!!
@vaibhavgiria59973 жыл бұрын
why do we need covariance of x 8:20
@ajaykumarmaddirala10172 жыл бұрын
Thank you very much for the tutorial in PCA
@dr.nafeesahamad85672 жыл бұрын
Really, it is amazing!
@mreriiie3 жыл бұрын
Great video! What i miss is u comparing the the clusters at the end of the video( pca() function) and finding what component is separation the two clusters so that you may track it over time to identify exact time that clusters switches
@laposanti5344 жыл бұрын
The clearest explanation of PCA I've found! Thank you Yarpiz
@theobui8763 жыл бұрын
your lesson helped me a lot. thank you, sir.
@alberto88994 жыл бұрын
Thanks a lot for your video man, it helped me a lot. Press F for respect.
@alberto88994 жыл бұрын
Thanks a lot man! really well explained
@yangxu24964 жыл бұрын
Thank you, sir. This video helped a lot.
@incredibleli4 жыл бұрын
This video really helps me, thanks a lot :)
@MageshJohn4 жыл бұрын
What an explanation! The concept is explained thoroughly and neatly.
@brahmaiahnallabothula85525 жыл бұрын
Sir please upload videos on economic dispatch problem
@reinkoop95004 жыл бұрын
Hey man, I really like your videos, so informative and nice :)
@SiddharthaSarkarHere4 жыл бұрын
two video requests 1. use of PCA to analyse/reduce a dataset for regression(only numerical variables) instead of iris/digits (classification) 2. biplot based interpretation/analysis of PCA/SVD
@adamlevschuk5714 жыл бұрын
great video, thanks
@alfirayuniar25628 ай бұрын
this video its very interesting but i doont know how to get digit data.csv and what component the digit data.csv?? thank you
@souadmassi76835 жыл бұрын
Welcome back Yarpiz, could you please do more videos about deep learning?
@yaraali44934 жыл бұрын
Thank you very much.. how can I rotate pca's in matlab?
@Farzad1982Mohaddes4 жыл бұрын
Thank you for the great tutorial. How can I plot my PCA in 3d in MATLAB (do you have the code)?
@lokidjr752 жыл бұрын
8:03 it should be capital X bar not small x.
@panzer32794 жыл бұрын
Excellent tutorial! If we write pca = PCA(0.95) in Python, then 95% of variance is retained. How can we do the same thing in MATLAB? I don't want to specify the number of components but want a fixed variance.
@p.kaikieu47963 жыл бұрын
57:30 sorry, but can you tell me, why look for the z matrix and then deduce the pca y matrix from there? i read the theory and only understood the step of finding the covariance matrix and the eig command, but in theory it just says : 'find the image of the matrix A^T. X^ of vector X^...." i don't understand the parts after that, i not good at English and i must use gg translate, it s really hard for me, hope u answer soon, this Pca is a homework for my team to get points for a year :((
@localguy1233 жыл бұрын
Hello, can you show how to do curvilinear component analysis on matlab?
@mustafacalcuttawala45813 жыл бұрын
Hey this was an amazing video with really clear explanations. However, around 32:14, you confuse the term Eigenvalues with Eigenvectors. Please correct me if I'm wrong! :)
@clementchidozie40094 жыл бұрын
hello mostapha, thanks for the video. please, why do we have try 3 colours in the figure? even though m = 2 Which 2 among them is the PCA? thank you in anticipation for the reply.
@mahdishakiba47533 жыл бұрын
Thanks Mostapha. The video was quite helpful. I have a short question. When I use MATLAB build in command [vec, scores]=pca(X); the values of scores are different from values of variable z in your code? Don't they suppose to be the same? scores in matlab function is not the projection of the data on each components? I would appreciate it if you could respond to my question. Cheers.
@deepthiraosonitha3 жыл бұрын
What is g value and why we have to calculate that?