Machine learning - Bayesian optimization and multi-armed bandits

  Рет қаралды 132,740

Nando de Freitas

Nando de Freitas

Күн бұрын

Пікірлер: 43
@subtlethingsinlife
@subtlethingsinlife Жыл бұрын
He is a hidden gem .. I have gone through a lot of his videos , they are great in terms of removing jargon .. and bringing clarity
@rikki146
@rikki146 2 жыл бұрын
Learning advanced ml concepts for free! What a time to be alive. Thanks a lot for the vid!
@Старкрафт2комедия
@Старкрафт2комедия 8 жыл бұрын
wow, this professor is such a great teacher. Model for all profs!
@always-stay-positive5187
@always-stay-positive5187 8 жыл бұрын
please explain the first colourful plot he illustrates with
@ibrararshad1650
@ibrararshad1650 7 жыл бұрын
You gotta watch his previous videos on Gaussian processes to understand this lecture. Basically you need to understand the Gaussian processes first.
@bingchaowang6073
@bingchaowang6073 4 жыл бұрын
@@always-stay-positive5187 using the acquisition function to locate the point we want to optimize I guess
@emmanuelonyekaezeoba6346
@emmanuelonyekaezeoba6346 2 жыл бұрын
Very elaborate and simple presentation. Thank you.
@truptimohanty9386
@truptimohanty9386 2 жыл бұрын
This is the best video for understanding the Bayesian Optimization. It would be a great help if you could you post a video on multi objective Bayesian optimization specifically on expected hyper volume improvement. Thank you
@S25plus
@S25plus Жыл бұрын
Thanks prof. Freitas, this is extremely helpful
@JS-bo1ns
@JS-bo1ns 3 жыл бұрын
Thank you for providing excellent resources
@DanHaiduc
@DanHaiduc 11 жыл бұрын
"heuristics" -> "terrorist sex" youtube automatic captions is getting better :D
@yuanyuan3056
@yuanyuan3056 7 жыл бұрын
Too good in explaining, I never took such detailed notes.
@SnoopingDope
@SnoopingDope 5 жыл бұрын
finally found a nice class. thank you very much
@taozhuo
@taozhuo 5 жыл бұрын
change playback speed to 1:1.25. btw great lecture!
@michaelcao9483
@michaelcao9483 2 жыл бұрын
Thank you! Really great explanation!!!
@michaelmoore7568
@michaelmoore7568 2 ай бұрын
Is the data that he's analyzing the some of many different Gaussians?
@hohinng8644
@hohinng8644 2 жыл бұрын
The use of notation at 23:00 is confusing for me
@ar_rahman_90
@ar_rahman_90 7 жыл бұрын
Thankyou! Great lecture. Really enjoyed
@yuanyuan3056
@yuanyuan3056 8 жыл бұрын
Great explaination!
@michaelmoore7568
@michaelmoore7568 2 ай бұрын
Why is he trying to maximize mean and variance?
@abbasalili9057
@abbasalili9057 2 жыл бұрын
Awesome!!!
@manoharg.h2993
@manoharg.h2993 4 жыл бұрын
Hi, If we have A=0,1 , B =0,1 and C =0,1,2 total combination is 12 ..How can we reduce using Bayesian optimization
@rajupowers
@rajupowers 5 жыл бұрын
Thompson sampling @59:00
@kapilagrawal5885
@kapilagrawal5885 6 жыл бұрын
Say we have n bandits labelled from 1 to n. And if on the x-axis, I take 1 to n and on y-axis I take their corresponding rewards. Then I don't think it would be safe to say that my function is smooth. What are alternatives when you don't have smooth functions?
@zhouxinning7284
@zhouxinning7284 4 жыл бұрын
I think when your actions are discrete and your utility function over actions f(a) is not be smooth, GP might not be your best choice. Instead, you can model a distribution for every action, e.g. using beta distribution for each bandit.
@seeungeheuer7083
@seeungeheuer7083 3 жыл бұрын
@@zhouxinning7284 though beta distribution is as far as I understand only a good choice for Bernoulli-bandits, where you either win or lose, isn't it?
@HiteshParmar
@HiteshParmar 11 жыл бұрын
Hello Sir (Nando de Freitas) , A Really Great lecture on this optimization method, I am a Computer Science student, and i have gone through your other lectures on Random Forests as well, sir i am working on a research project based on automatic tuning of the hyperparameters in Random Forests. This method is really great for that but i was wondering like are there any other optimization methods available to tune the hyperparameters ? It will be a really great help from your side Sir.
@linweili9238
@linweili9238 5 жыл бұрын
a stupid question: how to do x_{n+1} = argmax u(x | D)? just randomly choose x and see if it generate biggest u(x | D)? how essentially to generate the curve of the acquisition function? Thanks!
@jubintkm
@jubintkm 7 жыл бұрын
great teacher...
@amiltonwong
@amiltonwong 11 жыл бұрын
It seems there were some contents presented after 1:20:30.
@looper6394
@looper6394 7 жыл бұрын
refering to GP-UCB (around 57 min). Do you discretize the x domain and then search for the min (argmin GP-UCB(x)) or do you use a gradient-based optimizer on GP-UCB(x)? In case you use the second option, how do you calcuate the gradient of GP-UCB(x)? This should be analytically trackable.
@NirandikaWanigasekara
@NirandikaWanigasekara 10 жыл бұрын
in the PI acquisition function, the Phi function has the variance as the denominator. So to maximise Phi(x), mean needs to increase and variance need to decrease right? But the explanation in 40.31 the prof says high variance is needed since we are trying to maximise the area under the curve. Can someone clear this to me and show a way to connect the equation with the graph explanation please.
@dustintranv
@dustintranv 9 жыл бұрын
Nirandika Wanigasekara There's an error in the slides, which is that the probability for a right-tail should be 1 - the CDF. This corresponds to wanting the CDF to be close to zero, i.e., mean close to (mu^+ + epsilon) and variance as large as possible.
@pklalu
@pklalu 9 жыл бұрын
+Dustin Tran +Nirandika Wanigasekara I believe the equation is correct as 1-CDF(x) = CDF(-x) for Gaussian distribution. Higher variance is justified as long as mu(x) is less than (mu^+ + eps), but a lower variance might be preferred when mu(x) > (mu^+ + eps) which is counterintuitive.
@femtogary3723
@femtogary3723 6 жыл бұрын
Hello, professor Nando, I have som questions about the smoke simulation auto optimization.Since Bayesian optimization is about better places at next round, I see user can choose many places, so I think it should be many good candidates, and also, the objective function is what is still not clear, in user's mind? So you mean we using Bayesian optimization to approach the function in user's mind? And also, I check main open-source library out there, optunity seems quite nice and have a very easier api for end user like me. It suggest using Particle Swarm Optimization or Tree-structured Parzen Estimator to optimize,so can PSO and TPE also can do things like in the video, let user choose many candidate? Is it possbile? Thanks
@leolaranjeiragomes
@leolaranjeiragomes 8 жыл бұрын
Thanks!
@jakobbarger1260
@jakobbarger1260 7 жыл бұрын
Professor de Freitas has neat paper on this very topic. Do yourself a favor and grab the pdf at arXiv:1012.2599
@SrikantGadicherla
@SrikantGadicherla 6 жыл бұрын
thanks for sharing!
@glendepalma7057
@glendepalma7057 6 жыл бұрын
Good to know slot machines always pay out the same amount and there's no variability.
@eduardocesargarridomerchan5326
@eduardocesargarridomerchan5326 3 ай бұрын
Tutorial en castellano de optimizacion bayesiana, por si a alguien le interesa: kzbin.info/www/bejne/pH-1eIKco8qAmqM
@IgorAherne
@IgorAherne 6 жыл бұрын
I am becoming smarter ...muahaha
@always-stay-positive5187
@always-stay-positive5187 8 жыл бұрын
i dont understand those plots. they dont look lie Gaussians at all.
@shobhithathi9278
@shobhithathi9278 6 жыл бұрын
Always-Stay-Positive Actually, they aren’t supposed to be! The Gaussian process induces a gaussian prior over all possible functions. What’s being plotted is the mean function (the function that gives the mean at a particular point). Does that make sense?
Machine learning - Decision trees
1:06:06
Nando de Freitas
Рет қаралды 221 М.
Machine learning - Unconstrained optimization
1:16:19
Nando de Freitas
Рет қаралды 17 М.
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
32. Bayesian Optimization
26:18
Taylor Sparks
Рет қаралды 3 М.
Machine learning - Introduction to Gaussian processes
1:18:55
Nando de Freitas
Рет қаралды 299 М.
Machine learning - Neural networks
1:04:24
Nando de Freitas
Рет қаралды 31 М.
Machine learning - Maximum likelihood and linear regression
1:14:01
Nando de Freitas
Рет қаралды 111 М.
Reinforcement Learning from scratch
8:25
Graphics in 5 Minutes
Рет қаралды 120 М.
MIT 6.S191: Reinforcement Learning
1:00:19
Alexander Amini
Рет қаралды 78 М.
Machine learning - Bayesian learning
1:17:40
Nando de Freitas
Рет қаралды 62 М.
Machine learning - Logistic regression
1:13:47
Nando de Freitas
Рет қаралды 39 М.
Visualizing transformers and attention | Talk for TNG Big Tech Day '24
57:45
Thompson sampling, one armed bandits, and the Beta distribution
12:40
Serrano.Academy
Рет қаралды 24 М.
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН