You save my life with this video. Thank you very much
@churunlmaknun25014 жыл бұрын
Thank you, it helps a lot
@halimamotee92474 жыл бұрын
Extremely helpful, thanks
@muhamadrifai32163 жыл бұрын
Thanks for the proof, Sir!
@andorLOLChannel2 жыл бұрын
Very explanation and understandable helpful!
@subharthipradhan59873 жыл бұрын
Sir, can you provide table value through pdf manually????
@융융-o3k4 жыл бұрын
Thanks! I perfectly understand👍
@tomgreen57364 жыл бұрын
when you take the square root of z^2 shouldn't it be abs(z)? Is there some way you know z is always positive?
@computationempire4 жыл бұрын
If you are referring to y^2 = z^2/2. I'm showing that to show my objective of simplification. I can either use y = z/sqrt(2) or y = -z/sqrt(2) as solutions to that equation. So y can either be positive or negative. For the first one, it results in the integral limits of from -infty to +infinity since as z -> infinty, y -> infinty (and also with negative infty). For the second one, it results in the integral limits of from +infinity to -infinity but dy will be negative. It should result in the same answer. So in conclusion, you can choose either y=z/sqrt(2) or y =-z/sqrt(2). Just the first one is simpler.
@TGSG-rb5hz4 жыл бұрын
God bless you
@ymstatistics20232 жыл бұрын
👏👏
@zhangshijia17522 жыл бұрын
Hello, I am a little confused about the basics, why -(sigma * Z)^2 = -sigma^2 * Z^2
@MikaelSepaul11 ай бұрын
Look: -(a * b)^2 = - [ (a)^2 * (b)^2] The negative sign is applied to both factors. So, like the exponential to the second power, since both are in the same parenthesis, each of the items in the parenthesis is squared first and then the negative sign is changed.
@abdxlive8 ай бұрын
Thank
@owusualfredkwabena89292 жыл бұрын
Thanks Sir
@dancus252 жыл бұрын
a jövőkor figyelmébe: ennek a videónak a kibővített verzióját elfogadja Soós néni