Proof Of The Basel Problem

  Рет қаралды 52,765

Mr H

Mr H

Күн бұрын

Пікірлер: 79
@ikarienator
@ikarienator 2 жыл бұрын
The Weierstrass expansion needs to be explained better. Otherwise sin(x) = 2sin(x) = sin(x)^30 = exp(x) sin(x) because their roots coincide.
@geenstagni1060
@geenstagni1060 2 жыл бұрын
Beautifully explained! I'm an American uni student that has probably bit off more than I can chew in terms of my Real Analysis class so I turned to your video for help and I cannot thank you enough for taking the time to explain each and every step from scratch. Wikipedia, Math exchange, lecture notes, etc. have all failed me due to omitted "known" information but you sir, have not. Admittedly, I was a little confused at the part in which you compared the coefficients of both sequences, but I eventually got it. Your video put a smile on my face by making me understand maths again! Thanks you!!
@krabkrabkrab
@krabkrabkrab 3 жыл бұрын
It's a beautiful proof, mostly well-stated. The missing piece is that one has to impose that sin(x)/x =1 at x=0. That is the reason it's divided through by n^2pi^2. For example, a polynomial p(x)=2x^2-8x+6 has zeros 1 and 3. But then it is incorrect to assume p(x)=(x-1)(x-3). Knowing p(0)=6 demands the (x-1)(x-3) be scaled up by a factor of 2.
@MrH1207
@MrH1207 3 жыл бұрын
Thank you, yes perhaps I could have explained this more clearly!
@IsnardLopes
@IsnardLopes 3 жыл бұрын
Thumbnail said "Proven carefully", the first opperation the dude does is to divide by x, without assuming that x is not 0. (Contains irony xD)
@MrH1207
@MrH1207 3 жыл бұрын
Unless you remember that the limit as x approaches 0 of sin(x)/x = 1!
@MrH1207
@MrH1207 3 жыл бұрын
And you’ll also remember that the Maclaurin expansion is the Taylor Expansion about the point x=0 😬
@IsnardLopes
@IsnardLopes 3 жыл бұрын
I do remember both. 🤣🤣 And such facts are true because you are doing these observations for a neighborhood of 0, not for itself hahaha. Btw, good job on the proof ✌🏼
@MrH1207
@MrH1207 3 жыл бұрын
@@IsnardLopes thank you 🙏 this is true, but 0 is contained within that neighbourhood
@tansoon8257
@tansoon8257 3 жыл бұрын
@@MrH1207 sinx/x is not defined at 0, so more work (which I also don't know) needs to be done, to make the proof more rigorous.
@realcirno1750
@realcirno1750 11 ай бұрын
fourier series direct method: the fourier series of |x| on [-pi, pi] is pi/2 - (4/pi) sum(n odd >= 1) cos(nx) / n^2, this converges absolutely to |x|, if you let x=0 and do some algebra you get basel sum (its actually not too difficult to show that the fourier series converges uniformly to the original function if the sum of the coefficients converges absolutely, i would argue the analytical machinery behind that is much simpler than whats needed for weierstrass product) residue theorem method: the function f(z)=cot(pi z)/z^2 has a triple pole at 0 and a simple pole at other integers, the residue at 0 is -pi/3, the residue at n not equal to 0 is 1/(n^2 pi). it can be shown with a square contour that if g(z) is O(1/z^2), then the sum of the residues of g(z)cot(pi z) is equal to 0, hence -pi/3 + (2/pi) * sum from n=1 to infty of 1/n^2 = 0. (this method generalizes very neatly for calculating many different infinite series of the form 1/P(n) where deg P >= 2)
@elenaasi3960
@elenaasi3960 2 жыл бұрын
That was amazing,sir.Thank you for your time and effort.I don't usually comment under videos,but yours was really useful.You just gained a new subscriber.
@MrH1207
@MrH1207 2 жыл бұрын
Thank you very much! I’m really glad you found the video useful! ☺️
@RSLT
@RSLT 2 жыл бұрын
Great JOB! Well explained.
@dr.osborne7510
@dr.osborne7510 Жыл бұрын
Not rigorous without a proof of the Weierstrass factorization thm. I think this is the reson why Euler's contemporaries did not accept his first proof. Weierstrass came much later. How do we know, for example, that the product you reference does not converge to e^(-x^2) times sin(x)/x ? I do the same thing in a math class I teach, but always am concerned because of this missing piece. That class doesn't have the analytic function theory needed for the complete proof and I thought this video would show me a different way.
@מאמין-ג6נ
@מאמין-ג6נ 2 жыл бұрын
Thank you so much !! that was very clear !!
@minwithoutintroduction
@minwithoutintroduction 2 жыл бұрын
رائع جدا. أول فيديو في القناة اشاهده.أعجبني كثيرا. متتبعك من مدينة تنغير بالمملكة المغربية
@joeflorence5365
@joeflorence5365 2 жыл бұрын
Great video, keep up the good job
@小達-c4d
@小達-c4d Жыл бұрын
6:41 you have to explain in detail,how can we eliminate -pi^2 directly on the right and the left side have no change
@KevinAPamwar
@KevinAPamwar 5 ай бұрын
Brilliant!
@user-lb8qx8yl8k
@user-lb8qx8yl8k 2 жыл бұрын
Perhaps another commenter noted this already but you should have sin(x)/x = (1-x/π)(1+x/π)(1-x/2π)... Now when you take the limit as x approaches 0, you get 1 on both sides. As you had it, you would get 1 on the left side and an undefined infinite product on the right hand side. In particular, on the right side you'll have the infinite product π(-π)(2π)(-2π)... after you take the limit as x tends to 0.
@MrH1207
@MrH1207 2 жыл бұрын
Thank you for commenting on this!
@user-lb8qx8yl8k
@user-lb8qx8yl8k 2 жыл бұрын
So you should initially have sin(x)= x(1-x/π)(1+x/π)(1-x/(2π))(1+x/(2π))...
@MrH1207
@MrH1207 2 жыл бұрын
@@user-lb8qx8yl8k I believe that the proof still works, regardless of this small detail. But thank you for mentioning it anyways
@user-lb8qx8yl8k
@user-lb8qx8yl8k 2 жыл бұрын
@@MrH1207 -- You're welcome but I botched it a bit myself. I just now edited it.
@user-lb8qx8yl8k
@user-lb8qx8yl8k 2 жыл бұрын
@@MrH1207 -- A proof should not have any false statements. sin(x) ≠ x(x-π)(x+π)(
@diellzagerguri9398
@diellzagerguri9398 2 жыл бұрын
Thank you for this proof, really useful. May i ask where you got it from - which book?
@benphillips93
@benphillips93 2 жыл бұрын
How can you set (x + pi)(x - pi)... = 0, then set it equal to sin(x)/x?
@MrH1207
@MrH1207 2 жыл бұрын
At which point?
@samueldeandrade8535
@samueldeandrade8535 6 ай бұрын
He really can't. Not like this, without invoking any justification.
@Packerfan130
@Packerfan130 Жыл бұрын
how do you go from sinx / x = (x^2 - pi^2)(x^2 - 4pi^2)... to sinx / x = (1 - x^2/pi^2)(1 - x^2/4pi^2)... where did the -pi^2 in each factor here go?
@MrH1207
@MrH1207 Жыл бұрын
That is left to you as an exercise! 🤣
@Packerfan130
@Packerfan130 Жыл бұрын
@@MrH1207 cool, another math youtube that just writes steps down and doesn't explain them and uses laughing crying emoji randomly, got it.
@MrH1207
@MrH1207 Жыл бұрын
@@Packerfan130 I’m sorry that you feel that way, I made that video 2 years ago and I can’t remember all the steps - why don’t you have a go and prove it by yourself and tell me where I made the mistake
@samueldeandrade8535
@samueldeandrade8535 6 ай бұрын
​@@MrH1207 no one here said you made a mistake.
@chinabot6954
@chinabot6954 2 жыл бұрын
Nice
@trumplostlol3007
@trumplostlol3007 2 жыл бұрын
So, someone has proved that the series will converge after expansion? Or do we need to assume x tends to zero?
@MrH1207
@MrH1207 2 жыл бұрын
The Maclaurin expansion is the expansion around the point x = 0. :)
@Etothe2iPi
@Etothe2iPi Жыл бұрын
The town is called Buhsel, not Beisel.
@rainerzufall42
@rainerzufall42 5 ай бұрын
Most English speakers are not able to say "Basel"! It's an uncommon sound for them.
@calebbosire2110
@calebbosire2110 3 жыл бұрын
Well Done
@That_Gnome_Moose
@That_Gnome_Moose 11 ай бұрын
X=0(Yes)
@prakashsapkota3225
@prakashsapkota3225 8 ай бұрын
Did you publish this proof?
@samueldeandrade8535
@samueldeandrade8535 6 ай бұрын
Hahahahahaha. As if this proof is something original ...
@sesppsfd3815
@sesppsfd3815 3 жыл бұрын
why do we need to make the factors into the form of (1-x^2/(npi)^2) but not keeping (x^2-(npi)^2)?
@MrH1207
@MrH1207 3 жыл бұрын
It’s so that when we come to expand it out, we have everything finite! If we didn’t, then our power of x^2 would go racing off to infinity
@AJAY-wd6nl
@AJAY-wd6nl 6 ай бұрын
Thank you.....😂
@That_Gnome_Moose
@That_Gnome_Moose 11 ай бұрын
X = 0
@josepcolominas5616
@josepcolominas5616 3 жыл бұрын
Factorization theoreme implies a not justified multiplicative constant ?
@MrH1207
@MrH1207 2 жыл бұрын
Could you explain a little bit more?
@josepcolominas5616
@josepcolominas5616 2 жыл бұрын
you have constructed a polynomial whose zeros match those of the function, but multiplying that polynomial by a constant k would also satisfy the condition, but you have choosed k=1. Why?
@comma_thingy
@comma_thingy 2 жыл бұрын
@@josepcolominas5616 Consider both sides when x=0 (or more formally limx->0) to get k = lim x->0 of sinx/x = 1
@yuvraj9797
@yuvraj9797 2 жыл бұрын
It's not prononuciated Zahlen but "Sahlen"
@artsmith1347
@artsmith1347 6 ай бұрын
Please move the microphone away from the stylus. The clicking is too loud.
@That_Gnome_Moose
@That_Gnome_Moose 11 ай бұрын
Idk x= 0
@That_Gnome_Moose
@That_Gnome_Moose 11 ай бұрын
🤬🤬🤬🤬🤬🤬🤬🤬🤬🤬🤬🤬🤬
@adw1z
@adw1z 7 ай бұрын
to prove carefully, u need to even prove the intermediary theorems, such as the Weierstrass product formula; this wasn’t done
The Basel Problem: A double integral solution
17:12
Joe Breen Math
Рет қаралды 24 М.
1, 2, 3, 4, 5, 6, 7, 8, 9 🙈⚽️
00:46
Celine Dept
Рет қаралды 109 МЛН
The Limit (do not use L'Hospital rule)
12:08
blackpenredpen
Рет қаралды 690 М.
The Gaussian Integral is DESTROYED by Feynman’s Technique
24:05
Jago Alexander
Рет қаралды 83 М.
An interesting infinite sum
13:24
Michael Penn
Рет қаралды 48 М.
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
What does the second derivative actually do in math and physics?
15:19